GPC-3B SYSTEM

S T U I10Ca T ULURRET

TECHNICAL
MANUAL

Wheatstone Corporation
Jan 2006

GPC-3 Studio Turret Technical Manual

©2006 Wheatstone Corporation

% Wheatrtone Cormroration
B00 Industrial Drive
New Bern, North Carolina 28562
tel 252-638-7000 / fax 252-637-1285

GPC-3/ Jan 2006

GPC-3 CONTENTS

GPC-3 System

Table of Contents

Chapter 1 — GPC-3 Hardware

General INformationo 1-2
GP-3 Headphone Panel.........cooiiiiiiii e 1-3
Replacement Parts

GP-3 Pinoutsc........

GP-3 Schematic............ .

GP-3 LOAA SNEEL ... ettt a e
GP-4S 4 Switch Mic Control Panel ..., 1-7

R LC] o] F= YT =T 0 1= o A == U £ 1-7
(e S S o] o Lo 1§ | K= S PP 1-8
GP-4S SCHEMALIC ...uiniiiiii ettt aaes 1-9
GP-4S LOAd SNEET ... et 1-10
GP-4W 4 Switch Control Panelc.ooiiiiiiiiiiiiciiiieen 1-11
REPIACEMENT PAITS ... ettt e e e e aeas 1-11
GP-AWV PINOULS ..ot ettt ettt et et e e et e e e eaas 1-12
GP-4AW SCREMALIC ...ttt et e e e e e eneens 1-13
GP-AW LOAA SREET ...t 1-14
GP-8P 8 Switch Programmable Switch Panel 1-15
REPIACEMENT PAITS ... et ettt et e e e aeas 1-15
GP-8P PINOULS ...ttt ettt ettt e a et e et e e n e e e a e e en e 1-16
GP-8P SCHEMALIC ...iiniiiiiiii et 1-17
GP-8P LOAd SNEET ...ttt aas 1-18
GPC-1 SCREMALIC ...t 1-19
GPC-1 LOAA SNEET ettt 1-22
GP-16P 16 Switch Programmable Switch Panel 1-23
REPIACEMENT PAITS ... ettt e e e e aeas
GP-16P Pinouts

GP-16P Schematic

GP-16P Load Sheet
GPC-1 Schematic & Load Sheet see pages 1-19 - 1-22

GPC-3 Chassis Full Size Templateccccovviiiiiiiiiiiiiiiceieeeen 1-27
GPC-3 System Parts LiStcciiiiiiiiiii e 1-28
GPC-3 Installation Kit Parts Listcooiiiiiiiiiiiiiiii 1-28

GPC-3/ Jan 2006 page Contents — 1

GPC-3 CONTENTS

Chapter 2 — GP-8P/GP-16P Software

OVEIVIBW ettt e e 2-2
INSTAIATION ... e 2-2
ST = L 1 o L PPN 2-2
NIt T ESES i ea

Programming the Panel - an Example..........ccoooiiiiiiiiiiiiiinnne.

Programming the Panel - Diving Deeper
1S 7= 1 (1o T o Yo [
Looking at Your Script
I (@ ST =Y £] o [PP PP
FINISNING the SCIIPt o et eaeans

The Helpfile EXample ... e

LIO Configuration EXamPle ... eeas
(@11 Te [T L3R 1 o TSI o 1a - | P
CoNnfigure the GP-LBP LIOSo it eenas
Create a Script Using the SCript WIzZard
About Changing the Panel’'s IP AdAreSSociiiiiiie e eeeanes
WWAE'S INEXE? ..o ettt et e et e e e e e e e e e e e e aeans 2-17

GP-16P Configuration Tool Programming Guide............... Appendix-1
Title Page
Table of Contents

continued
R a1 e To [Lo 1 o o H PP
1.1 GP-xx Hardware Compatibilitycoooiiiiiiii e 3
2 What YOU Need tO Get STArt@do eeaas 4
2.1 GP-16P Configuration TOOl SOftWarecoiuiiiiiiii e 4
2.2 Physical Network CONNECHIONiuiiiii e 4
2.3 1P AAresS SeTtINGS «uouintiiiii ettt et a e 4
2.4 XPOINE SOTIWEAIE ...ttt eas 5
2.5 GP-16P HeEIP Fl et 5
3 Using GP-16P Configuration Tool SOftwareooiiiiiiiiiiiiiii e 6
3.1 Programming ProCcedure@ SUMMAIYcuiuuiieeeeieieeeea e eeeaaeaeaeeaeeeneaeanenenns 6
3.2 AAAING DEVICES ... ettt ettt et aeaaan 6
3.3 T0ggle ON-LINE MOEuiiie et eeas 6
3.4 Create a NeW SCHPL File ..o 7
3.5 Script Wizard BUutton FUNCLIONS ... e 8
3.6 COMPIIE TNE SCIIPT ettt e e eans 9
3.7 Starting the Script
TR S T =TS o [PP PPN
3.9 Reviewing the Script Wizard COAeooiuiiiiiieee et eeens 10
4 Configuring Device Properties
4.1 Surface CONFIQUIATIONue et e e aeenes
4.2 Starting the Device Properties Dialogccoiuiiiiiiiiiiiiii e 11
4.3 LIO CoNfIQUIAtiON ... et e e e e 12
4.4 Starting the Device Properties Dialogocoviviiiiiii e eeenes 12
4.5 Design PhilOSOPRY ... 13

GPC-3/Jan 2008 page Contents — 2

GPC-3 CONTENTS

5 LIO Example Using DeVICE PrOPertieS ..c.uuiuiuie it e e aeaeens 14
5.1 Configure the Source Signal in XPOINt ... 14
5.2 Configure the GP-L16P LIOS ...t eaes 15
5.3 Create the Mic Control Script Using Script Wizardc.ccccooiiiiiiiiiiininenne. 17
5.4 Reviewing the Script Wizard COde ... 18
5.5 Beyond the SCript WIZardcooiiiiiiiie e e e e 19

6 What is the SCriPt EQItOr? ..ot eenas 20
6.1 SCript EQItOr FEATUIESuiieiiie et eens 20
6.2 Third Party EITOrS . ..ot et e e e e e e e e eenas 21

7 Creating CUSTIOM SCIIPES ...ttt ettt et e e e e e e eaennes 22
7.1 Getting the EXample File ... e 22
7.2 EXampPle SCrPE DESION ...uiiiiiiiiite e et eaaas 22
7.3 Auto-generated Script COMPONENTS ...t aeana 23
7.4 Custom Start UpP SUDBIOULINEGoeiiii e e e e e e e naens 23
7.5 EXample SCHPL STTUCTUIE ..c.oi e eea e 24
7.6 Example Script - Variables and CoONStantscccoeiiiiiiiiiiiiiiiiiiieeeeea 25
7.7 Example ScCript - SUDIOULINESouiiiiii e aaens 27
7.8 EXample SCriPt - ACLIONS ... 28
7.9 Custom SCripting SUQQESTIONS ...uiuiiiiiiiiiie e ee e neaens 29
7.10 Scripting ROULEr CONTIOl ...uu e 29
7.11 Scripting SUrface CONIOL ... e eeaes 29
7.12 BasiC SUrface FUNCHIONS 29
7.13 Advanced Surface FUNCHONS ... 30
7.14 Example surf_talk CommandsSo.oiiiiiiii s 30

8 GP-16P Scripting LANQUage OVEIVIEWcuiuieiieiiieeeeiee e et eeeae e e eaeae e eeeneneaaans 31
8.1 CASE SENSITIVILY it 31
S I ©e] 0 010 oY o | K= TSP 31
LS 2 X o 1 0 o =P 31
8.4 Global Variables ... e 31
8.5 Local & Static Local Variables ... 32
ST I @0 g 11 = g | = PP 32
ST A N g = Y= T PP 32

9 GP-16P Scripting Language SIrUCTUIEc.iuiiiiieieeeee e e e aeaeeens 33
0.1 SCHIPL STTUCTUIE .. ettt ettt e et e e et e e e e eenaens
9.2 Constant Declarations
9.3 Global Variable Declarationscccoiiiiiiiiii e 33
9.4 Global Array DecClaratiONs ... 34
9.5 Local & Static Local Variable Declarationsccooiiiiiiiiiiiiiiiieeee, 34
9.6 Action Bodies
9.7 ACHION ParamMETErS ...ttt eeaenes 35
9.8 SUDIOULING BOIES ...euitiiiiii ettt ae e 35
9.9 SUDIOULING ParametersSc.u e e e 35

10 Script Debugging
10.1 Finding Compiler Errors
10.2 THird Party EITOrS ... ottt e e eenas
10.3 Using “Print” and Telnet to Debug

Appendix A
Appendix Al - Example Custom Script File

GPC-3/Jan 2008 page Contents —3

GPC-3 HARDWARE

GPC-3 Hardware

General INformation ... 1-2
GP-3 Headphone Panel.........coiiiiii e 1-3
REPIACEMENT PAITS ..ottt 1-3
(€ e B =T oo U) £ PPN 1-4
GP-3 SCREMALIC. .. e 1-5
(@1 2 T o T Lo IS o 1= 1-6
GP-4S 4 Switch Mic Control Panel ..o, 1-7
REPIACEMENT PartS ..o i et 1-7
L S T o Vo 111 £ 1-8
GP-4S SCREMALIC ..uiiii et 1-9
GP-4S LOAd SOt u.e i e 1-10
GP-4W 4 Switch Control Panel ..o, 1-11
Replacement Parts

GP-4W Pinoutscccvvveviieennns
GP-4W Schematic
GP-4W Load Sheet

GP-8P 8 Switch Programmable Switch Panel 1-15
Replacement Parts
(€1 = S i = 15 [0 10 1 £ PP PRPRRN
GP-8P SCREMALIC ..cuiiiiii i
GP-8P LOAA SREET. ... i
GPC-1 SCREMALIC . it eaes
GPC-1 Load Sheet

GP-16P 16 Switch Programmable Switch Panel 1-23
Replacement Parts
(€ e G i 1 0T T) £ PP
GP-16P Schematic
GP-16P Load Sheet
GPC-1 Schematic & Load Sheet see pages 1-19 - 1-22

GPC-3 Chassis Full Size Templateccccooiiiiiiiiiiiiiic s 1-27
GPC-3 System Parts LiSt c.coiiiiiii e 1-28
GPC-3 Installation Kit Parts LiStcccoviiiiiiiiiiiiiieeeeeen, 1-28

GPC-3/Jan 2006

page 1-1

GPC-3 HARDWARE

GPC-3 Hardware

General Information

The GPC-3 system (W# 008710) is comprised of a desk turret (W# 008700)
having some combination of the available panels installed. The turret can hold
three single-wide panels, or one double-wide panel and one single-wide panel.
Several single-wide panels are offered: the GP-3 (W#008705) headphone panel, the
GP-4S (W# 008706) 4 switch mic control panel, the GP-4W (W# 008707) 4 switch
control panel, the GP-8P (W#008708) 8 switch programmable switch panel, and
the GP-BK (W#008720) blank panel.
The double-wide GP-16P (W#008709) | F===============—1)
16 switch programmable switch panel is
also available. The panels are described
in details on the following pages.

On the bottom part of the turret are & ,@
4 predrilled holes (3/16"D) that are used
for mounting the turret to the countertop.
Drill holes in the countertop by using 4 Drill Center Marks
the supplied full size turret template for #8 Screws 3/16" bit
(W# 008712; see page 27). Then place
the turret on the counter and secure it
with the supplied #8 screws.

GPC-3 Chassis Template

GPC-3/Jan 2013 page 1-2

GPC-3 HARDWARE

GP-3 Headphone Panel (w# 008705)
The GP-3 panel is comprised of a switch, a Low Z level pot, and a headphone jack.

All user wiring to the GP-3 panel takes place at the 12-position plug terminal and
the RJ-45 connector mounted on the GP-3PCB.

GPC-3/Jan 2013

Rear View

REPLACEMENT PARTS

PART NAME W#

FACEPLATE 008753
GP-3 SWITCH BARRIER LEFT 008714
GP-3 SWITCH BARRIER RIGHT 008719
SWITCH 510109
CLEAR FLAT TOP CAP WITH WHITE BASE | 530109
& WHITE INSERT

POT DUAL LINEAR LOW Z 500121
21MM GRAY COLLET KNOB 520023
21MM BLACK CAP WITH WHITE LINE 530319
6 PIN PLUG 230031
6 PIN HEADER 250065
RTS JACK 260005
12-POSITION PLUG ON BARRIER STRIP 260045
12-POSITION BOXED HEADER 260046
RJ-45 CONNECTOR 260048
SWITCH LED RED 600027

page 1-3

GPC-3 HARDWARE

GP-3 Pinouts

Plug Terminal

HEADPHONE LT
HEADPHONE SH

=

N

HEADPHONE RT w
N/C IS

N/C o1

N/C o

SWITCH N.O. -
N/C o

SWITCH COM ©
SWITCH LED + B
N/C =

SWITCH LED - 5

RJ-45 Connector

| | | HEADPHONE LT

| | | HEADPHONE RT
-—- | switcHN.O.
} } HEADPHONE SH
| | | SWITCH LED -
-—- & | switcHcom

| || NC

[8]I [SWITCHLED +

Note: Level pot is Low Z (100W).

page 1-4

GPC-3/Jan 2006

PHOENIX CONNECTOR

CT2
I I HDPN_LT
L (LA —<
| @ | HDPN_SH O
| |
| | HDPN_RT
| @ | —
@D
| |
EDy
|
'sz}ﬂ SW_NO
17 M —<>
| |
G
SW C
1€D: —=<>
| | LED_A
Q0 -
€L
| | LED_C
2 <
Swi1
SW_NO 1 ;I: 2 SW_C O
LED_C 4 |>| 3 LED_A
< <>
"ON" SW

HDPN_LT

RJ-45 CONNECTOR

HDPN_RT

SW_NO

HDPN_SH

LED_C

%
IE
0

0 000000

LED_A

HDPN_LT
<> =

CT1

HDPN_RT
<> =

10023 2

100§6 5

CTiq1

HDPN_SH
<> =

CONTRACT NO. G P 3
- Wheatstone Corporation -
APPROVALS DATE
VW\Nheatstone Corporation
DRAWN wwp | 6-27-05 600 Industrial Drive
CHECKED SA_I'SiZE [FSCMNO NeDv\\//vEc;;eerNC 2 REV
ISSUED s | B ' o 00S0041 A
Wi 700841 SCALE | op3apcB [SHEET 10F1

1

GPC-3/ Sep 2006

GP-3 Headphone Panel Schematic

page l-5

GPC-3 HARDWARE

@ cscccacdreen o

| |

[) (]

)i : °.t

[]
% ® :%: | R X X

& = R2 e eoqd
@ Yvwneatsione @ e @

Top

a.

Qo0 Qoo qoeood»on

Py - CT2

C E
, . B :
[]
as ’

@ [[

GP-3 Headphone Panel Load Sheet

GPC-3/Sep 2006 page 1-6

GP-4S 4 Switch Mic Control Panel (w# 008706)

GPC-3 HARDWARE

The GP-4S panel has “ON,” “OFF,” “COUGH,” and “TB” (talkback) switches for
use as a microphone input remote control.

All user wiring to the GP-4S panel takes place at the 12-position plug terminal or the
RJ-45 connector mounted on the GP-4PCB.

GPC-3/Jan 2013

Rear View
REPLACEMENT PARTS
PART NAME W#

FACEPLATE 008755
GP-4 SWITCH BARRIER 008715
SWITCH 510109
RED TRANSP CAP FOR SWITCH 530097
ORANGE TRANSP CAP FOR SWITCH 530098
CLEAR FLAT TOP CAP WITH WHITE BASE | 530109
& WHITE INSERT

12-POSITION PLUG ON BARRIER STRIP 260045
12-POSITION BOXED HEADER 260046
RJ-45 CONNECTOR 260048
SWITCH LED RED 600027
SWITCH LED YELLOW 600031

page 1-7

GPC-3 HARDWARE

GP-45S Pinouts

Wire these connections to the console mic input channel or Wheatstone
Bridge logic card port.

Plug Terminal

COUGH
TBTOCR
TALLY OFF
TALLY ON
REMOTE OFF
REMOTE ON
GROUND
GROUND
+5V DIGITAL

c

9 ¢ v ¢

+5V DIGITAL
N/C
N/C

\l

o]

©
[N
o
[N
[N
[EEN
N

*RJ-45 Connector

[| | GROUND

} | | coucH
-—- | TBTOCR
| } TALLY OFF
| | | TALLY ON
- [6], | REMOTE OFF

| | | REMOTE ON

| | +5V DIGITAL

*This connector pinout matches the W# 008653 LRJ-2001 rear panel connections for Wheat-
stone Bridge logic cards. Simply plug a standard CAT5 cable between the GP-4S RJ-45 connec-
tor and the logic card rear panel.

GPC-3/Jan 2006 page 1-8

2

1

PHOENIX CONNECTOR
CT1

MC_COUGH

MC_TBZCR

MC_TALLYOFF

MC_TALLYON

MC+5V

<
(@]
+
a1
<

CICICICICICICICICle

[
[

0000000000

(2!
Swi1
OM[,ON 1 ;l: 2 GNDO
X
MC_TALLYON R1220 4 3 MC+5V
<O VW—_|<} <>
"ON" SW
SwW2
OM[,OFF 1 ;l: 2 GNDO
DS
MC_TALLYOFF R2220 4 3 MC+5V
<O VW—_|<} <>
"OFF" SW

RJ-45 CONNECTOR

GND |
< > } I 1 I I
ST COUGH | | THIS CONNECTOR PINOUT
<O —(2) | _ _ .| MATCHES THE W# 008653 LRJ-2001
MC_TB7CR I | | REAR PANEL CONNECTIONS
<& — —(3D . | FOR WHEATSTONE BRIDGE
e SRR : D | | LoGIC cARDS.
S— I | SIMPLY PLUG A STANDARD
MC_TALLYON |
<> —(5) I | CAT5 CABLE BETWEEN
MC_OFF | I | THE GP-4S RJ-45 CONNECTOR
0 - | D) ! | AND THE LOGIC CARD REAR
O L (7)) T 7° PANEL.
MC+5V D
< > + 1 ()
| = %i -
Sw3
(> P00 1 [==1] 2 GND_ —
"COUGH" SW
SwW4
(> FCTBZR 1 [==1] > GND_ —
"TB" SW
CONTRACT NO.
- Wheatstone Corporation - G P-4S
APPROVALS | DATE -
W\ Vheatstone Corporation
DRAWN Wwp |10-13-05 600 Industrial Drive
CHECKED SA New Bern, NC 28562
SIZE [FSCMNO. _ |DWG. NO. REV
ISSUED s | B 80S0040 A
W# 700840 SCALE | cp-aarce | SHEET 10F 1

]

1

GPC-3 7/ Sep 2006

4 Switches Mic Control Panel Schematic

page1l-9

GPC-3 HARDWARE

.“u .. ".W“ °

aeo ° wé ctt ¢ o]
L] (] |
¢ cre ° ° g
Bottom

GP-4S 4 Switch Mic Control Panel Load Sheet

GPC-3/ Sep 2006 page 1-10

GPC-3 HARDWARE

GP-4W 4 Switch Control Panel (w# 008707)

The GP-4W panel has four general purpose illuminated switches.

All user wiring to the GP-4W panel takes place at the 12-position plug terminal or
the RJ-45 connector mounted on the GP-4PCB.

Rear View

REPLACEMENT PARTS

PART NAME W#
FACEPLATE 008755
GP-4 SWITCH BARRIER 008715
SWITCH 510109

CLEAR FLAT TOP CAP WITH WHITE BASE | 530109
& WHITE INSERT

12-POSITION PLUG ON BARRIER STRIP 260045

12-POSITION BOXED HEADER 260046
RJ-45 CONNECTOR 260048
SWITCH LED RED 600027

GPC-3/Jan 2013 page 1 -11

GPC-3 HARDWARE

GP-4W Pinouts

Plug Terminal

SWITCH 3
SWITCH 4
TALLY 2
TALLY 1
SWITCH 2
SWITCH 1
GROUND
GROUND
+5V DIGITAL
+5V DIGITAL
TALLY 3
TALLY 4

9 ¢ v ¢

\l

(o]

©
-
o
-
[ERN
=
N

RJ-45 Connector

'z | srounD
| | | swiTcH3
S | switcH4
} 4] } TALLY 2
| TALLY1
-—- &1 | switcH2
‘ | switcH1
. 311 | +5vDIGITAL

No connections available for Tally3
and Tally4 on this connector.

GPC-3/ Jan 2006 page 1-12

2

1

PHOENIX CONNECTOR
CT1

®
zZ
@)

MC+5V

MC+5

<

o

TALLYS

[EnY
N

500000000000

TALLYL

006000000O00

Swi1
S SW1 1 o-l; 2 GND oS
X
TALLYT R1 220 4 3 MC+5V
<O VW—_|<} <>
SwW2
S SW?2 1 o-l; 2 GND oS
DS
TALLY? R2 220 4 3 MC+5V
<O VW—_|<} <>

®
Z
w)

RJ-45 CONNECTOR

)
=]
wJ

)
=
o~

]
>
—
—
—
N

—<
[N

)
=]
N

%
=
=

<
O
+
a1
<

QQOOOO00

NO CONNECTIONS
AVAILABLE FOR
TALLY3 AND TALLY4

ON THIS CONNECTOR.

sSw3 k—
S SW3 1 o-l: 2 GND oS
=
TALLY 3 R3 220 4 3 MC+5V
O w— 1K D
Swa
S SW/ 1 o-l: 2 GND oS
=
TALLYG R4 220 4 3 MC+5V
CONTRACT NO. G P 4W
- Wheatstone Corporation -
APPROVALS DATE -
W\ Vheatstone Corporation
DRAWN WWP | 10-13-05 600 Industrial Drive
CHECKED SA_I'SiZE [FSCMNO Ne\évv?grrl]\]g —— REV
ISSUED s | B ' o 80S0040 A
Wi 700840 SCALE | opaapcB [SHEET 10F1

1

GPC-3 7/ Sep 2006

4 Switch Control Panel Schematic

page 1-13

GPC-3 HARDWARE

.“u .. ".W“ °

aeo ° wé ctt ¢ o]
L] (] |
¢ cre ° ° g
Bottom

GP-4W 4 Switch Control Panel Load Sheet

GPC-3/ Sep 2006 page 1-14

GPC-3 HARDWARE

GP-8P 8 Switch Programmable Switch Panel (w# 008708)

The GP-8P panel has eight switches that can be programmed for a variety of functions by
using the Ethernet-enabled GUI software (described in Chapter 2).

The unit has an RJ-45 connector for Ethernet connections and a DC power jack mounted
on the GPC-1PCB.

~
- HINEEEEEN -

Front View

Rear View

REPLACEMENT PARTS

PART NAME Wi
FACEPLATE 008757
GP-8 PCB "L" BRACKET 008745
COAXIAL POWER JACK 260054
RJ-45 CONNECTOR UPRIGHT 260048
SWITCH NKK W/BRIGHTED RED LED 510290
WHITE CAP FOR SWITCH 530004
POWER WALL ADAPTER 980035
PLUG KIT FOR POWER ADAPTER 980037

GPC-3/Jan 2013 page 1-15

GPC-3 HARDWARE

GP-8P Pinouts

RJ-45 Ethernet Connector

7] | ™D+
}\ TXD -
~——— [3]! | rRxD+
- =
| 51
- [6] | RXD-
\ L7 1
el

|

>

5}
=t 11
S

=

=

[

=

Plug the supplied AC adapter into the AC
mains and into the DC IN power jack on
the GPC-1PCB to power-up the panel.

GPC-3/Jan 2013

page 1-16

SW1 D1 4148
SW_X 0 e ~J SW_Y 1
L1
7
LED X 0 NG
1
1
SW2 D2 4148
e N SW_Y 2
L1
] >
N
1
2
SW3 D3 4148
e N SW_VY 3
L1
>
N
1
3
C Swa D4 4148
e N SW_Y 4
L1
>
N
1
4
SWS D5 4148
SW_X 1 e ~J SW_Y 1
L1
>
LED_X_1 N R6 39 LED_Y O
D 1
5
SW8 D6 4148
e N SW_Y 2
L1
>
N R7 39 LED_Y_1
1
6
SW7 D7 4148
B e N SW_Y_ 3
L1
>
N R8 39 LED_Y_2
1
7
SW8 D8 4148
e N SW_Y 4
L1
>
N R9 39 LED_Y_3
1
8

LED_X_0

ee

DSPL_CLK

=
o

DSPL_RS

B

+3.3V

LED_X_1

[N
N

SW_X 5

DSPL_DIN

i
IS

SW_X_3

SW_X_4

[
(&)
i
o

SW_X_1

SW_X_2

[y
J
=
o]

SW_Y 7

SW_X_0

SW_Y 5

SW_Y_6

R3 R2

il.OOK il.OOK
GND GND

C1
0.1uF

e | |

@
z
o

SW_Y_3

SW_Y 4

N
w
N}
=

!

D

R12

1.00K

LED_Y_7
LED Y 5
LED_Y 3
LED Y 1
R10
1.00K
Gﬁ D

SW_Y 1

SW_Y 2

N
(&)

SW_Y 0

27

LED_Y 6

29

LED_Y 4

w
-

LED_Y 2

wW
w
w
IS

LED_Y 0

HHEEEEEEEEEE000
HEEEEEEEEEEEE

R1 R11

1.00K il.OOK

GND GND

R13

il.OOK il.OOK
GND GND

R4 R5

i B

GND

[CONTRACT NO.

- Wheatstone Corporation -

GP-8

APPROVALS | DATE Y\Wheat stone Corporation
DRAWN wwp | 12-5-05 600 Industrial Drive
CHECKED % I'size [Fscmno Ne\é)vvsé”:\ic,)\‘ - REV
iSSUED = 1%C | ' N gosoozs [
W# 700838 SCALE | cp-sarcB [SHEET — 10F1

3

?

2

1

GPC-3 7/ Sep 2006

8 Programmable Switch Panel Schematic

page 1-17

GPC-3 HARDWARE

'?'

+
4a4a0
SW1

e g ‘ vy g o9 eee E eee
A % A 'I' A % A % A % A
+ + + + + +
a4a0 a4a0 CAO 40 d00 - d00 - 400

sw2 1B sw3 I swq

@Wh@otftom@

D1 R6
@===@
>
D2 W BR7

GP-8P 8 Programmable Switch Panel Load Sheet

GPC-3/ Sep 2006 page 1-18

out +33V
7777777 I
| .7—/]
ETH_TX- 14
e - | ‘
| T
C87 0.1uF | LED_X_0 | 5 @_{
GNDH| 15 RIOAT | ETHERNET RJ-45 CONNECTOR &P]
. — ‘ D @
[N |
ETH_TX+ I RJ_P8 DSPL_CE | L LED_X_1
— c1+ v+ X+ = ! | o @@
| | ! RJ_P7 DSPL_RS | DSPL_DIN
D 0.1uF 3 6 €92 0.01uF | | 1 = 0 €D) Q2+ D
o v c63 c6 {F—aeno ! ! | (@)__,L RJ_P6 RXD SWX5 L(13) (@] 1 SW X4
4 | = -
! |
4 | |
01uF T 0.1uF | | RJ_P5 SW_X_3 SW_X_2
o2 ca+ I . I . Rx. ETH_RX- B ! ‘ ! Ot e (B @® ;
0.1uF = = | RJ_P4 SW_X_1 ! SW_X_0
Towr slc, oD ofD RS7 47 | | & G @
€86 0.1uF 85 00F | I ! RJ_P3 SW_y 7 ! | SW_Y 6
—— XD EE] S 7} To — enpi—]| onpi—| ! | = RXD+ —= (1) (@) —
20| T20uT L N - RJ_P2 TXD- SW_Y 5 l @D @ i SW_Y_ 4
RXD 12 13 R1| ETH_RX+ | ! | ! SW Y 2
CORe oyt R REL R ! | RLPL — 1yp. sw_y 3 & @ v
2 r20uT R2N|E - L= wv1 : | Yo
Y L Y
—(25) (26)
LTC1386 LED Y 7 | ! LED Y 6
+3.3V +3.3V — ‘{27) (28 H+ —=
I
LED Y 5 | LED_Y 4
—] =—= (29) (30)+ =—= —
Rat +3.3V DCin LED_Y 3 ‘ ! LED_Y 2
10.0K . == +—(31) (32)+ =
CE0 X0 CED X 1 |
C}**iﬁ Q3 === LED_Y_1 @ @‘ LED_Y 0
FDN340P = = T
LED_X_0 - L
GND
R16 +3.3V vee
1.00K
GND = <| © o = o| 2| o| | | of %| o
S8 d| 3l 3| R 8|8 838
$ES 388888888888
OETH—MDC—ZBMDC 11 55555555555
ETH_MDIO 27 QaaoQ 80 ETH_TX+
+33V +33v +33V +33V +33V +33V +33V vee +33V O—= 7 lwbio l=a) P S LLUNES D
> > EBTHTX & gy C
ETH_TXDI[O] 44
C R39 R40 R41 R47 R46 R45 R44 R38 R43 R42 T1.0 O# TXDO
OO ETH_TXD[1] 45
332 332 332 220 220 220 220 220 619 220 OETHTXD[Z]—AG TXD1
CO——=—= = {TXD2
ETH_TXD[3] 47
o 3 =1 2 o = © 0 | R1I o= 1TXD3
a2y VA EAVA VA g 2y EAVA g 4 O CSEMIXERR w0 | S e, Rl ETHRG o
% 7 7 % 7| % % 7| % - = ETH_TX_EN 2 |y en R |22 ETH_RX- = RX-
1 1 | = ETH_TX_CLK 2 | ok
E £ E o o ETH_RXD[0] i it
= & -~ | GND Q# RXD1/PHYAD1
w i ; . ~ m 3 O ETH_RXD[2] % % NRZ+ |2
E £ £ E E e E & Semmog |22 : y
= = = = = w C}W RXD3/PHYAD3 TX_NRZ-[—
C}m—” RX_ER/PHYAD4/RXD4 .
— Qm—“ RX_DV/MI_DRV SIGNAL+[—= —
O—"22 2k 1 IRx EN SIGNAL- &
T2 ETH_RX_CLK 3% | oy oLk
~22 . {CO—————————"RX(
1 RS ETH CoL RX_NRZ+ —;
48
! GND = COL/PHYADO RX_NRZ- |—
+3.3V +3.3V 43,3V +3.3V +3.3V ! - | & OETH*CRS—AQ CRS/PHYAD2
| FPGA TCK —
ED, < ETA-MICIRD
c76 cr2 | ! FPGA_TDO o O % Iirre
0.1uF o 0.1uF o | | EPGA TDI " o
\ — 2 {|repeater spD100 |-
D GNI GN GND GND) | FPGA_TMS ——{10BT_SER
I ®7 T O O %0 [LP SBK5° [PSTRT spp10|-2£
FPGA OB S lipek 60 FTATXTEDT
e TXC
32_1BPALIGN S e —D
B CT4 BPSCR o |oreese 70 ETH_RX_LEDZ B
. —RX_
133V 433V 433V 133V X - - vee O—Zi BPSCR [EDz [STt
O = ISODEF [
I | | GND 64 —=|_71 ETH_LNK_LED3
c2 c90 | | GND S O—=—————————{PwWRDN LED3|———— — >
. (€D] O I
Io_m: I I . Io 1uF I ' GND 7 | ano CS8952 Epi |2 LED4_FOX-LED
= < < O+ — <>
D GN GN GND GRD I ! POV 38 _fAN1
or— : S TCM] (e (Eps |2
e
2= 8 lixstewa
CT1
= 86 RES
+12v +12V +12V +12V +12V +12v +12V +12V +12V +12V +12V +12v ! +3.3V C}ET"LRESET—B RESET RES <>
|
! GND
| c28 c7 cs1 c89 [SE cn cs50 cs5 c13 cr4 c39 cs3 | 2 Jcikes |
0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF | PROM_TCK
IO S O O S O O R L O | s DS I B P
= = = = H = = H = = H = % 5
GND GND GND GRND GND GND GND GND GND GRND GND GND w33V : CO———=——=——XTAL TESTL e
MIIPWR = 3.3V L8 ! PROM_TDI e
ETH_COL R76 10.0K | <> ===
ETH RX_EN R78 10.0€ ! ‘ PROM_TMS dae spmovonnoonnononne $888988
—— ~] nuon DODDDDODDNDDDDODDNDOOONON nunnnnnon
ETH_MI_IRQ R75 4.99K EPTR(SMJ > > > >>>>5>5>5>5>>5>>>5>>>>>> OXoYooooo
+2,5V +2.5V +2.5V +2.5V +2.5V +2,5V +2.5V ETH_MDIO R74 1.30K ol gl g Aolelal el =l ol el <l gl gl 2 ol ol 5] gl 2 2 ol ol 3| | el o]
TPSTRT R33 4.99K
car cs2 c73 c12 ca9 caa c6 TCM R3l 10
IO.luF Io 1uF Io F Io F I F IO.luF IO.luF G’y\“D
= = = = = & &
A GND GND GND GND GND ND ND BPSCR w52 499K CONTRACT NO A
- w1 GPC-1
ETH_TX_ERR RT7 4.99K 1% DIPSW 0] —, - SA UR US - Sergey Averin -
RES R67 4.99K 2 DIPSW_[1] +33V Y1
. TXSLEWO e 3 DIPSW_[2] APPROVALS DATE Wh t t C t
vce vce vce vce vce vce vce vce TXSLEW1 R30 4.99K 4 DIPSW_[3] CLK25 XTA <> DRAWN eaLsione orporation
LPBK R37 100K L P SA |5-17-07 600 Industrial Drive
cs8 ce8 c46 ca1 ce9 ce5 cs9 ce6 L GND CHECKED New Bern, NC 28562
Io.m: Io.m: Io 1wF Io 1wF Io 1wF Io.m: Io.m: Io.m: GND SA
= = = = = = = = ISSUED SIZE|FSCM NO. [DWG. NO. REV
GND GND GND GND GND GND GND GND SA D 8080042 C
W# 700843 SCALE | GPC-1C PCB [SHEET 10F3

GPC-1 Controller Schematic - Sheet 1 of 3

GPC-3 / Apr 2012 page 1-19

g A RN EEEE 3 3 QEEE T s ek Es 2 BB ENEE S|
5 El RESIE 2133 3 8 Ea bl - e] i] sl s o e B = 5155|355 T
0 | | P =Y D T) O O [d| |ad 7z i & wlw|wo|ulojul w
o|o|2|2 |1 o (W 7 2
| 2 alz|5lz| 2|2]3 > S <| |< 215 s e
433V LClL 2 | o|5|°lo| =z|z|o 5 z wioqe Bl |@ e
3 CPU_PLLHV © o° o < <
IN OUT| R27 1.00K +3.3V
GND rL}cu ca0 -
2] EMI_FILTER
D IZZUF Io.m: HP_EN R24, 1.00K GND D
Gio o oo ol slslolalsl glalzlsl gl < of ol 8l 5l ol vl 22l gl 2 ol 2 ol ol 2l ol sl ol slzlolalsl el 2l gl sl 2lgl e ool ol sl ol vl gl =
HEEEEEEEEEEREEE 1 S I R e e e R HEEEEEEEEEEEEEEERE EEEEEEEEEEEERE
SY>>>F wuWUF0 So© k] 5 0000000000000y o PR
DZThonln s 22FE o 2x IS 02120 be 2ego 2 2n D)
Dx4n:n:|ﬂf CEFR 333 rTErTEIrETEaxax Lezwzo - zaoza T zwxx S¥goTzoza“Waoz 207 FPGA_PGRM
o4z = [rririie] 55555500393 FLCFRE RR8 HLoo o0y ¥YEIRY ESLc PROGRAM Bp————————=—— (>
sSo0no < \\\\\\mr\ow% 156 R13 1.00K +3.3V +2.5V R56 4.99K 56 £€22%33 3333 Z200 o023 3333 2322 —"1"104 R52 47 FPGA CCLK
4 8383 gdg9a00zfo HD4/GP[0] F— W ————————<> M2 2552506 0000 O9s8s SS90 0000 oo CCLKg—— ——————>
3 © o80b0boTTETS 155 02,888 22282 Q59 2 Qe iQoin 103 FPGA_DONE
© ITIzIzIzx @7 R HD2/AFSX1 M1 =Z94 == === =2l za'Z === 2534 DONE|F2——— 2P =
154 R9 1.00K GND R61 100 o o m oo N N ™ - o o
I I HD3AMUTELf——W——— > Mo 44 <4993 a9 4 4 EPGA TMS
FASIACLKXL %2 GND Re4 100K gs¢ gog 0g¢ g g2 ™S e FPGA_TDI 5=
HDU/AXRL[7] |22 (O-CGND REROC 206 fswap_EN = = I Z“WO
EXT_INT4 ADST/AXR1[6] (= Too |22 ok
Qm—l GP[4](EXT_INT4)/AMUTEINL ADS2/AXR1[5) 22 TokgEE — TOA R S
NI aa—— 2| GP[6I(EXT_INTS) HDO/AXR1[4] | 24- < >—§E{“[Ziﬁ§g 2_11/0,L01P_7/VRN_7 -

— Qm—s GP[S](EXT_INTS)/AMUTEINO HCNTLO/AXR1[3] 128 COOSILMREEDS 8 1y6) 01 7ivRP_7 1/0,LOIN_2/VRP_2 NWO —
O GPITIEXT_INTY) ACS/AXR1[2] |42 COO-ERXLEDZ 4 lyo116p_7/VREFT /0 LO1P_2IVRN 2 | 15— X5 =
+3.3V 499K R34 g 144 ETH_TX_LEDT 5 154 BET
{CO———————A———{CLKS1/SCL1 HCNTLY/AXR1[1] |—— C}W 1/O,L16N_7 1/O,VREF2 —mo

12| iNp1/AHCLKXO s HRAVIAXR1{0] [2 Om—7 VO,L19P_7 VOL19N_2 152_E|)13C>
21 1ouTI/AXRO[4] HRDY/ACLKR1 [F22. C}ETH—TXM—Q 1/0,L19N_7/VREF7 1/0,L19P_2 H@
2 | cLkxoiacLkxo HHWIL/AFSR1 [ETHiTXD[Z] 10 liio,L20p_7 UO.L20N 2 ED[14]
27 1iNPo/AXRO[3] HoLp |2 QW—” 1/0,L20N_7 1/0,L20P_2 %@
18 {rouTo/AxRo[2] FOLDA | 3L ETHiTXD[O] 2 lyoL21p 7 1o,L21N_2 |24 s
22 1 CLKRO/ACLKRO BUSREQ [FPGA DONE OM\]I—B 1/0,L2IN_7 " 1/0,L21P_2 H@
22 px0/AXRO[1] HINTI/GP[1] BSRM—WK——EDOO QETH—TX—CLK—“ 1/0,L22P_7 1/0,L22N_2 H@
2L ESXOIAFSX0 EDO H@ QETH—TX—ERR—w 1/0,L22N_7 1/0,L22P_2 H@
22| FSRO/AFSRO ED1 H@ W 1/0,L23P_7 1/0,L23N_2/VREF2 H@
sy P 21 DRO/AXRO[0] ED2 H@ QETH—RX—CLK—W 1/0,L23N_7 1/0,L23P_2 H@
OBV APRE 28 6L KSO/AHCLKRO ED3 H@ QETH—RX—DV—ZO 1/0,L24P_7 1/0,L24N_2 H@
C 2 Esxa ED5 H@ OETI—i_R'XI_)O—Zl 1/0,L24N_7 1/0,L24p_2 {38 7 ><[3] C
32] bx1/AXRO[S] ED4 H@ QW—ZZ 1/0,L39P_7 1/0,L39N_2 m_ED—‘lO
38 CLKX1/AMUTEO ED8 H@ C}ETH—RXD[Z]—Z“ 1/0,L39N_7 1/0,L39P_2 [135 ED[S]
—zs CLKR1/AXRO[6] ED7 —<1§2 ED[G] > < >—ETH—RXD[3] ij 1/0,L40P_7 yoLaoN 2|8 =B ¢ ED[; >
| prusDAL ED6 H@ COEMROBL 2 o) son_7ivREF? T o] R c—) D
= FSRU/AXRO[7] TMS320C6713 EDIOf—————————=
% SCLO EDY %@ Qm—ig 1/0,L40P_6/VREF6 1/0,L40N_3/VREF3 |2 Eg{ﬂ
22 1spao ED12 “—ED[H]O 2| VOLaON 6 1/0,L40P_3 m_ED[O]C)
ED11 m—EDMO Om—l 1/0,L39P_6 1/0,L39N_3 mWO
Ep1a | 213 ED[15] e O B 3 _11/0,L39N_6 1/0,L30P_3|*2 SW X 1
0 ED15 H@ Om—“ 1/0,L24P_6 XC35200 1/0,L24N_3 HS_SMO
‘8 ‘2 5 oYy o E—) D =R % lio124N_6/VREFS vo,L24p_3 12— L2
% 5 =2 D - 2 lyoL23p_6 wozaN 3 HE L
2 2 6@ [y - E—) D O % ljolasne 110,L23P_3VREF3|HE— SW.YS M
- = 5_I08E 5ET |08 BEL X S EEDL 3 {022p 6 JoL22N 3|20 SW_Y_5 <—
3 8213318 LEDZ a | i FT WY 4=
> O TX00 8 g moanwd~o O CO—=—————I0L22N_6 IoL22P 3 == (>
QN svworcooddgledaSadaagddad o) LED3 42 117 Sw_y_ 3
cUMlccI<c<<<<O<OPEIR << (@Y COoO————————=I0L21P 6 1/0,L21IN_3 ==
<lOuUwuUuUuUUwuluoY<OolWw W wwwwuwwlolo 43 116 SW Y 2
Tl e 1/0,L21IN_6 IIO‘L21P73WO
8l u| 2| o] | 2] | o] | o] o] | [| 2]] o]] o] 5] o 5] 5] o] o] & E] B[B 4 {yo,200 6 /0,L20N_3 Ll
EXT INT7 25 11/0,L20N_6 5 10,L20P_3 |2
O 9% lolior s o - - 1/0,L19N_3 m—l_EMO
g 330pF lca EXT_INT6 a1 |IOVRER 8‘ g § : £58 83 30 833 g ga8gs E s YOLLTN S 0p LED_Y 4
0| CO-EXTINTG s og o9 008 Q802 coda [ECC— R D
MBEHE FPGA CCLK 220 R6 Tl EXTINTA {vo.Lotp_ervRN_6 5555 w355 55°%, S355.5555 <+; §5; O,LL7P_3VREF3 -2 oy s
o o] L L L L O . . sa0pF 5 O |lotomevRes ¥z8z pgez 22380 §8azlbezeg Bzl g3l JOLOIN IVRP 3 ep v =
o o et o s oo ot 5 T R o B 59 S) 5 5 ST PROM_CCLK 220 R7 T, 8899 §58§ 88J39g 998383888y §8& §3¢g O, LOIP_3VRN_3|-—————————===C
eelsEiER s EREE R BB EE R 5 R 55 EE i 000000505000993 2939300050535 033038
B EEEECEECEECEEE CEE B
sl ol ol ol ol 5l 0l sl el ol o <l o o] ol of ol ol @l @ =l of of ol <] ol of x| 8] 5] &
HEEEEBEEEEEEEEEEEEEEEEEEEEEEEEBEEE
+3.3V
4
3] ? €]
EABA[22] EABA[23] 0 '% ol = £
< I o
oo as L gl = z| & (= =S =P E iR o XPCRM —
us CPU_TMS | El @ ! CPU_TRST 3l &8 » n NHE] B[St e g‘ g‘ g‘ g‘ NN slel FPGA_PGRM
EA[2) ED[0] U4 i T g o5 slzIkl 2] S ~ R49 220 CPU RPOM =
e [pqopt—— 2 cPu_TDI ‘ | oo P 2 @ ols| g ¢ 233|5l2(2 13|05 |2|2|2|2|al o O-"R_ CPURPGM =
J— = [HEEE =
&S EQS} z“ AL po1 4 EEE} oS O +33V LOKRSS 14|\ opavp A2l 13 Eigigg O - ED) e 100K 100K S| o x|~ x| O o|&|k|a|B|o|o|c G|a|a|a|a|a PROM COLK
5 5 1 | Sl
A2 b= A0 > 5 e T 4
EA[S] 2 Q2 ED[3] ED[15] 45 o EA[21] o T Eh 200 = = 9 FPGA_CCLK
- EAI6) A3 bQ3 ED[4 2 - ED[14 DQ15A-1 AL9 EA[20) 2 C}w GND GND 3|0 o7 CPU_CCLK 2
EAH §§ Ad pos 2 50%5} 50%13} ﬁ DQ14 - A18 i? EAEQ} CPU_TCK ! | G N
D P——E N E—— Ao B—w———
COo———A5 Dsf————= <> O——=——————DpQ13 AlT|f——m T — > o 10
—] = EA[8] a1 o Dgs 11 ED[6] = ED[12] 39 Dglz L6 18 EA[18] S |) e PROM_DATA > —
EA[9] 2|, o |2 ED[7] 2 ED[11] o1 AtslE EA[17] slol FPGA_CDATA
| ! CPU_EMU1 - R4S 220
X Eag] | s pos|2 Folg = < Eo0) 71 oA [P EAlle] = CPU_EMUO G- | o CPU_CDATA =
< Ea) 2 a Folg = < Eoi9) 32 3 EAlLs] = = ‘ = -
Az A9 bQso Eoro] = < co8 DR A13 EAla = fTTTTTToo =
S EA[13] 2[ro 0Qi0 2 ED[11] < S ED[7] 0% A2p EA[13] < GNP R
- Hau boi :; 50%12} < S ED%G} ﬁi”‘” ALl 2 EAEZ} <
DRI CO—=———DQ6 A== > +33V R79
EA[14] 20f g p0 ng 50 ED[13] ED[5] 20 Dgs ol EA[11] 425V 425V 433V 425V 425V u12 00K
:: EA[15] 2 ea1 DO14 51 Eg[i;l] C: C: Eg[g] 38 DQ4 rs k8 EQE(;] :: e - U1l N TEL 2 1 n0 P ET_FLASH
P CM—CE DS BBl Blpos arfe EADL X 2fvces veeo 2 —a1 B~
BEOQ 15 ED[2] 33 19 EA[8] 1.00K$ 1.00K 1.00K 4 16
< oML < eon pQ2 A6 AT = PROM_TMS PROM_TDO Az B2ps
[| S—] YTV QW DQ1 A5 H@ RoVTO! 5 ms - +> a3 B3>
EMIF_CLK - = #1000 e EA[S] - PROM_TCK P e PROM_DATA A Bl CONTRACT NO
A O—————Tc aa—— - e R e t-as BSIE : GPC-1 A
+33vOQ———CKE nRE— L +— A6 B6 [—) =
& AWE/SOWE ulw ALl EA[3] S PROM_CCLK 3 heoik TEbL FPGA_PGRM & 9 a7 872 - SA UR US - Sergey Averin -

T e . T e D e ALY APPROVALS | DATE .
AWE/SOWE 16] o= AOE/SORAS 28| — FPGA_INIT) p— CE1 DISABLE 10|~ Wh t t C t
O SWE ORI g OE/RST 3 ealsione Lorroration

ARE/SOCAS |l s —o==|47__RI7 100K +3.3V FPGA_DONE 0l == = ===l DRAWN . .
{O——==Z—==——4CAs N BYTE p—— W A——— > CE CEO p—~ R65 SA [5-17-07 600 Industrial Drive
< AUE/SIRAS) e CPU_RESET 2les = Lo 741cx245
- XCF04 CHECKED SA New Bern, NC 28562
MT48LCAM16 M29W800 A = - o e
ISSUED IZE[FSCM NO. |DWG. NO. REV
SA
z 8050043 |
W# 700843 SCALE | GPC-1C PCB [SHEET 20F3

8 ! 7 ! 6 ! 5 T 4 ! 3 ! 2 ! 1
GPC-1 Controller Schematic - Sheet 2 of 3

GPC-3 / Apr 2012 page 1-20

R15 2.00K RL1 619K
FBS
€10 0.01uF
POV CBS TS; vee
6| Q2 |3
F1 FE_ CB L1
DCm.——- POV 2N our|LQUTS am e
POLYSW Lot ono ss|
1.0A 5| 4| 7|Lm2673
ca3z c3s c23 cu o1 c26 car . ca2 73 72 7 cs6
MBRDS35 1SMB5919 1SMB5919 1SMB5919
SSOUFT ZZUFT zzm:T Tmp 10K, c17 Tum: Tum: Tlsoom: 56V 56V 56V Inup
Re 0.220F 03 1
t T ‘ 75) GND
GND
u10 ™5
+3.3V OUT
veeOr _L 3 v our 2 _L ? O+33v +33V
et 1] L1117 ce I
4 7uFI 33V IA TuF c24
47uF
GND GND GND I
GND
P4
+2.5V OUT
veeOr ? QO+25v +2,5V
c7a_L _Lms
4 7UFI IA 7UF cs7
47uF
o o T
GND
433V vee
R4 RS
100K $10.0K
5 U2
onoi—f© G} PBRST WDS
NMI
iy FPGA_CDATA j s . « PGRM
U3 Icm 25V BATS4 D3 ¢——IN RST =
0 S DS1706
R51 220 =il VIN I‘”“F v BATS4 D2
REG SYNC [—'\N\:——II-GND VIN L -
= = 21 syne VIN S R2
499K
2.5V MoVV PR 2 ssiena X::
R29 PH O+ oD
2l veias PH
100K oH
PWRGD12 4 lowred PH
PH
2 {comp PH :
TPssas10-t [7
PH o TPL
PH ?
2 {ysense BooT |-
ca2 19
= PGND _Lcm
0.01UF 18
PGND IAWF
PGND [
R28 1 16 =
AGND PGND GND
2.00K 15
PGND
R20 10.0K
POWERPAD
GND GND GND 031' 'o_omp =23 100
)
CONTRACT NO. G PC 1
- SA UR US - Sergey Averin -
APPROVALS DATE @ .
ks Whealstone Corporation
SA [5-17-07 600 Industrial Drive
CHECKED SA New Bern, NC 28562
ISSUED SIZE|FSCM NO. [DWG. NO. REV
SA
b| | 8050044 |'¢
W# 700843 SCALE | GPC-1C PCB [SHEET 30F3

| 5 T 4 |

' 2

' 1

GPC-3 / Apr 2012

GPC-1 Controller Schematic - Sheet 3 of 3

page 1-21

GPC-3 HARDWARE

L1

R8
e
0 wms
T

lh-

v 2c42 GPC'O1C c17
N

GND*

P3@

DC IN

@

Clomm B ®

N
S
N~ ©
FE:cH 0 ca» cT3

|IIIIIIII’IIIIIIIII!IIIIIIIII'IIIIIIIJIIIIIIIII'II cs6 B

ReeRsasts oo

BR35 €53 C55

>
in
o
+

Er: T'I’“Rz;z8 R43 °R44 R45 R46
R39 Dsz DS3 DS4 Dss DSB DST Dsssﬁsm
°T5 iR Rt s s ale s aln wln alp alp i

DONE LNK RX TX +3.3 +5V LED3 LED2 LED1 LEDS "+3 3V

+12

c14 CT1 c15U3 H BRi2
nuiLl::em Il CT2 B awris _
c24 -U @l C20 8
i &-N W8 R2Y .
P WBR23 o
(\l.:. EBC30 Cl o
Saen eWMC32 M
. “asamrs LH3

nB Res @B TP1© m

L2

llllllllo
sy
!
chg

Top
Q@ ® O B Rrs5y .
Crg RS HED -9. [N :
S A M e
> s & . W2
Q) EWCT4
@) - s ag — R52 s
& se B © o cct B
oy R53 el u8 s
O gy £ = o
D e 1 R) _R55
Ogepg 5 5 D 8 fum 2
. 3322 3 g.:- 13}
@ "uss o U5 eomm So Ban
I s
.Sgg§§ reamm [N . i
Eheogeo ‘
- R - cee & UTTIT=ES
R E 5 cot Bk =) 5 ®
. .;ﬁ. === Rsllllllllll 2
@ w- O ® 53y cg3 RT9 Ut2

[Sergey Averin USA|
\Cepeeu ABEpUH CUJA\

J1-0d9

GPC-3/ Apr 2012

Bottom

GPC-1 Controller Load Sheet

page 1-22

GPC-3 HARDWARE

GP-16P 16 Switch Programmable Switch Panel (w# 008709)

The GP-16P panel has sixteen switches that can be programmed for a variety of functions
by using the Ethernet-enabled GUI software (described in Chapter 2).

The unit has an RJ-45 connector for Ethernet connections and a DC power jack mounted
on the GPC-1PCB.

3
- AHINEEEEEN -

Front View

Rear View

REPLACEMENT PARTS

PART NAME W#
FACEPLATE 008759
GP-16 PCB "L" BRACKET 008746
COAXIAL POWER JACK 260054
RJ-45 CONNECTOR UPRIGHT 260048
SWITCH NKK W/BRIGHTED RED LED 510290
WHITE CAP FOR SWITCH 530004
POWER WALL ADAPTER 980035
PLUG KIT FOR POWER ADAPTER 980037

GPC-3/Jan 2013 page 1-23

GPC-3 HARDWARE

GP-16P Pinouts

RJ-45 Ethernet Connector

7] | ™D+
}\ TXD -
-—- [3]! | rRxD+
=
| (51
;ff‘lzl\ RXD -
\\
el

|

>

5}
=t 11
S

=

=

[

=

Plug the supplied AC adapter into the AC
mains and into the DC IN power jack on
the GPC-1PCB to power-up the panel.

GPC-3/Jan 2013

page 1-24

swi .
SW_X 0 - Dﬁ“ SW.Y 1
P
LED_X_0 &
11
1
sw2
— DZM“"E SW_Y 2
P
<y
11
2
sws
e D&m SW_v 3
P
Nl
11
3
sw4
ey D&m SW_Y. 4
2
<y
11
2
SW5 D5 4148
SW_X_1 pry & SW_Y 1
P
LED X_1 d Rs 39 LED_Y 0
11
5
Swe
e D&“"a SW_Y 2
P
5 Re39 LED Y 1
6
sw7
ey D&“a SW_v. 3
P
5 R739 LED_Y 2
Z
sws
e D8 4148 SW_Y 4
2
5 Re39 LED Y 3
8

sw9 o avts
SW_X_2 [= 11 PRY SW_y 1
1%l
%
LED_X_0 s &< s
1%l
SW10
2 [= |1 PRE# SW.Y 2 vce Pov +33v
1 S A S v S, —
2 |
Al o—t
1%l |
10 .3 .—.4 7
LED_X_0 ! C: | R4
SW11 DSPL CLK ; @ | 1.00K
D12 4148 ¢ |
2= %Y Sw_y 3 D
=l I
OSPLCE B - LED_X_1
SNiE DSPL_RS = = DSPL_DIN
1%l i LD @+ |
11 SW_X_5 | ! SW_X_ 4
Swi2 SW_X_3 ‘ ! SW_X_2
EA) (&) =2
[o5]s PRY® SW_Y 4 SW_x_1 ! i SW_X_0
ST - D @ - c
& |
3 < e SW_Y_7 I SW_Y_6
> 1) (@)
] SW_Y_5 | | SW_Y_ 4
12 == D @H Y.
|
2 Sl (& @D Sz
SW_X 3 2= Ry® SW_y 1 SW_y 1 | ‘ SW_Y 0
== = = (25) (26)t =
P . LED_Y 7 ‘ ! LED_Y 6
LED_X_1 3 M/ 4 R13 39 LED_Y 4 == : C21) (28) : =
LED_Y 5 L) G LED_Y 4
13 LED_Y 3 = = LED_Y 2
swi4 N RE N ED, Ny
! |
o= 11 m’ttlua SWY 2 LED_Y_ 1 + @ @ : LED_Y_O
1%l = __ == s
7 R2 R11 R9 =
3 ,\’| 4 R14 39 LED_Y_ 5 100K S100K S1.00K GND R1 R10 R12 R3 -
A : : : 100K $100K $1.00K < 1.00K
14 GND GND Gl?l = = = =
SWi5 GN GND GND GND
2 [= 1 PRE® SW_Y_3
1%l
2
3 1< |4 RIS 39 LED_Y_6
1%l
15
SW16
2 [= 11 PRE*® SW_Y_ 4
2
3 1< | R16 39 LED_Y_ 7 B
1%l
16

0.1uF

5

Q
24
S

CONTRACT NO.

- Wheatstone Corporation -

GP-16 A

APPROVALS DATE .
AT WWheat stone Corporation
WWP | 8-4-05 600 Industrial Drive
CHECKED SA New Bern, NC 28562
ISSUED SIZE|FSCM NO. [DWG. NO. REV
SA
0| | 8050039 [
W# 700839 SCALE | GP-16 PCB [SHEET 10F1

| 5 T 4 |

2

' 1

GPC-3 / Jan 2006

16 Programmable Switch Panel Schematic

page 1 - 25

GPC-3 HARDWARE

:
A % § A

i
[KX) L XX
HE

>
Py
DI W mD
>
D7 HCH W
DS MISH W BR12

SW2

.
[~
W\/Vheatstone ‘ ‘

R5
{.' ml@.:n(.'
>
D2 a B3

< mn o
x x r
M
jad [] [] [] [] n © []
EH eee B eee H 0‘1 H 0eee o 0?1 g XD o oy © 0eee
o AN AN AN AN AN AN AN AN
3 + + + + + + + +
geo geo geo Sad yeoo geo ged seo
SW9 = SW18 Q SW11 _I'] SWi12 SW13 S/N SW14 SW15 SW16
° ° ° O e @

GP-16P 16 Programmable Switches Load Sheet

GPC-3/ Jan 2006 page 1 - 26

—— 3.708 —

5.700

4 Drill Center Marks
for #8 Screws 3/16" bit

GPC-3 Chassis Full Size Template
GPC-3/ Jan 2006 page 1-27

GPC-3 HARDWARE

GPC-3/Jan 2006

GPC-3 SYSTEM PARTS LIST

PART NAME W#
GPC DESK TURRET 008700
GP-Ul UNDER COUNTER MOUNT ASSY 008701
GP-3 HEADPHONE PANEL ASSY 008705
GP-4S SWITCH PANEL ASSY 008706
GP-4W SWITCH PANEL ASSY 008707
GP-8P SWITCH PANEL ASSY 008708
GP-16P SWITCH PANEL ASSY 008709
GP-BK BLANK PANEL 008720
GP DUAL RACK FACE 008744
GPC INSTALL KIT 008711
GP PANEL ROUTING TEMPLATE 008718

GPC-3 INSTALLATION KIT PARTS LIST

PART NAME W#
GPC-3 TURRET MOUNTING TEMPLATE 008712
GPC-3 MANUAL 008713
440X3/16 PHILLIPS PANHEAD S/S SCREW | 820019
832X5/8 PHILLIPS PANHEAD S/S SCREW | 820127

page 1-28

GP-8P/GP-16P SOFTWARE

GP-8P/GP-16P Software

Chapter Contents

(@ 7Y VTV 2-2
INStallation ... e 2-2
ST (B 1 o T PP 2-2
TNt Al T SIS i e e 2-3
Programming the Panel - an Example ..., 2-4
Programming the Panel - Diving Deepercccooiiiiiiiiiiiiiienennnn. 2-6

S = 1 (0] o J @0 Lo [TP 2-8
LOOKING @t YOUI SO .ottt ettt ettt et e e e e e e e e e enanens 2-8
[(@ IR S Y=Y 1 1] o Lo [PP UP PPN 2-9
FINISNING the SCIIPt . .ee ettt e e e eaeens 2-9
The Helpfile EXample ... 2-10
LIO Configuration EXAmPIe ... aean 2-10
Configure the SIgNaAl ...ttt 2-10
CoNfigUure the GP-L16P LIOSuiiiiii ittt e e e e e eeenns 2-11
Create a Script Using the SCript WIzardoiiiiiiiiiii e eeeas 2-13
About Changing the Panel’'s IP AdAresscouiuiiiiiiiii e 2-16
WVNAE'S NEXE? ettt ettt et et et et e e et e et e e e e e e enns 2-17

GPC-3/Jan 2006 page 2-1

GP-8P/GP-16P SOFTWARE

GP-8P/GP-16P Software

Overview

The GP-8P (eight button) and GP-16P (sixteen button) Programmable
Button Panels are designed to integrate with the Wheatstone Bridge Router
System and provide a variety of general purpose switching functions.
Installation is easy, requiring only an Ethernet connection and the provided
power supply. Each panelis shipped with the necessary software to write and
test scripts, which define the function of each button on the panel.

Installation

As mentioned above, installation is easy. Connection is made to the
Wheatstone system via an Ethernet cable to the hub or switch (see pages
1-16 and 1-24 for a typical Ethernet pinout). A wall wart type power supply
is connected to the panel and plugged into a 120 volt AC outlet. When the
panel’s power is applied, it will go through its normal boot sequence. If
something goes wrong, the buttons will continually flash a fixed pattern in
unison. If this happens, see the help file section on LED Error Codes.

Setup

The panel ships with a GUI (Graphical User Interface) program,
Gpl6pConfigTool, that allows youto set up and program the device for your
application. Once the panel and the computer are running on the same
network, double-click on the Gp16pConfigTool icon to start the GUI. The
program will attempt to connect to the panel via Ethernet, and the panel will
then execute the last script that was loaded into it (more on this later).

The GUI needs to know the IP address of the panel in order to connect.
The default address is typically 192.168.1.221 for the first panel in a system,
but in any event there is a sticker on the panel showing the IP address it was
set to at the factory. To change the panel’s IP address, or to check it (in the
event that it was changed from its factory setting and this detail was not
marked in some eye-catching fashion on the panel), you can run the
WSNetServer utility program, discussed later. The IP address of the device
is mainly there to enable communication with the GUI, and is not a parameter
that needs to be set up anywhere in the Bridge system or its own GUI
(XPoint). However, if you are going to use the panel’s buttons to execute
commands on surfaces in the system, you will need to know the IP addresses
of the surface(s) you will be interacting with.

The GUI application’s title bar gives you some important status informa-
tion. As an example, let’s say the title bar says:

GP-16P Configuration Tool — MyPanel (On Line — Connected) —
[btn_test.ss]

GPC-3/Jan 2006 page 2 -2

GP-8P/GP-16P SOFTWARE

Let's break this down and see what it’s telling@PB-16P Configu-
ration Tool tells us that the application is used to configure the GP-16P
panel. Next we see the name we have given the panel we have selected
(more orselectingater); in this caseMlyPanel. We can also see that the
programisinthe On-Line mode, and that we have established a connection
between the GUI and the panel. Other possible combinatio@sndree
— ConnectedOn Line — Not ConnectedandOff Line — Not Connected
If the title bar say®ff Line , you can change this by selectibgvice | On-
Line Mode. A check markin front of On-Line Mode reaffirms thatyou are
inthe On-Line mode. Lastly, we see that_test.sgs the open script; this
may or may not be the script that is currently loaded in the panel.

The panel’s buttons can be programmed in several ways. They may be
programmed to interact only with the panel’s own button LEDs (fairly
trivial to implement and also pretty much only useful as window decora-
tion). More interestingly, and also more importantly, the buttons can be
programmed to send commands to the Bridge Router for the purpose of
making, breaking, locking, unlocking, and querying the status of crosspoint
connections. Salvos can also be fired. And various commands can also be
sentto surfaces in the system to initiate actions and to query status. We call
your attention to the extensive help file, already alluded to under the
heading ofnstallation, that accompanies the GUI; several functions will
be mentioned in this brief introduction to the panel, but we encourage you
to plumb the depths of the help file to get you up to speed on the true power
of this system.

Initial Tests

Once you have the panel operating, it will begin running the last script
that was loaded to it. From the factory, this is typically a button test. Press
any button and it will light; release the button and the light goes out.

The GUI installation includes a small set of test scripts that will
demonstrate a few of the basic scripting features. Click dfildenenu
and selecOpen... This will allow you to open any of the sample scripts.
Once a script has been loaded, you can edit it and print it. Depending on
how deeply into the scripting you want to get, it might be a good idea to
print out each of the scripts, run them, and try to grasp the correlation
between the script statements and the actions performed.

Torunascript, you first need to compile it by seledBodd | Compile
(more useful if you've just edited a script and want to see if it compiles
before going any further) @uild | Compile & Download (if you know
the script is correct and just want to go ahead and send it to the panel).

Once you have the panel up and running, and have tried a few sample
scripts, you are then ready to try your harmtegramminga script of your
own.

GPC-3/Jan 2006 page 2-3

GP-8P/GP-16P SOFTWARE

Programming the Panel — an Example

In order to do any useful work you’ll need to get past the canned scripts and
write one of your own. This section will attempt to help you work your way
through a simple example, that of using button 1 to turn a fader on on a surface.

As previously mentioned, the GUI ships with adecent help file. Evenifyou
don’t want to use all of the features at your disposal, you will need to actually
read a few of the help pages.

Since our chosen example involves sending a command to a surface, let’'s
start by making sure the panel knows how to communicate with surface. But
before we can do anything, we need to make sure, in the case of multiple panels,
that we know which panel we are using. Seltice | Devices.to bring up
a list of panels the GUI is familiar with. If there is only one in the system, just
make sure that one is highlighted and pres$S#iectbutton on th&sP-16P
Devicesform. If there are multiple entries, highlight the desired panel, then
pressSelect Incidentally, this form is where you go to enter panels in the list
of known devices; the help file will explain how to do this. When you’re done
here, clickCloseto exit the form.

Now, let's pretend the IP address of the surface we will control is
192.168.1.11. Selebevice | Properties..to see th®evice Propertiedorm.
Surfacesshould be highlighted in the left panel. In the box é&taface 1
enter the IP address for the surface (this box will be grayed out if you are not
on line and connected to a panel). If you will be commanding other surfaces you
can enter their IP addresses now. When done,©kckf you have changed
or added surfaces you will need to reboot the panel for the changes to take
effect.

A later section will show you how the other properties are used.

Now for the actual script. SeleEtle | New...to discover the standard
WindowsNew File dialog box. Navigate to the desired directory where you
will store the script, then enter the name you have devisedrilédhiame:box
(I have chosen to useysScript . ss for my example). If you fail to append
the . ss extension to the file name Windows will do that for you. C8elve
to create the file. A dialog box asks you if you would like to save you changes;
click Yes. Up pops th&cript Wizard form. For the purposes of this script, just
click OK. But go ahead and delve into t8eript Wizard when you get a
chance. It will make many things easier.

Now selecView | Script Editor... If you've stayed with me this far the title
bar will sayScript Editor: MyScript.ss . The top panel of the editor has a gray
background and contains text that has been generated for you by the Script
Generator. Code in that panel can’t be changed. You’'ll enter your script in the
lower panel.

Carefully enter the following code in the lower panel. Enter everything
exactly as shown.

GPC-3/ Jan 2006 page 2 -4

GP-8P/GP-16P SOFTWARE

What does it mean? First, there iseaion involved — someone is
going to press button 1 on the panel (as signified by BTN_1 PRESS), and
when they do, we want to know it. And we’re going to light the button for
them (as signified by btn_led (1, ON), where the ‘1’ refers to button 1) so
they know thatwe know they pressed it. Now, after the line that lights the
button, and before the closing bracket (‘}’) that marks the end aiciien,
add this code:

Your action should now look like this:

Theactionnow does whatit did before, plusitturns on fader 4 on surface
1 (as signified by surf_set_input_on (1, 4, ON), where the ‘1’ is the number
of the surface —remember we specified an IP address for Surface 1 —and 4
is the channel number on the surface we are affecting).

We’'re almost done. Let’s see if we might have made any errors. First, if
you haven't already done so, save changes by selé&di#i{dgave Now we
are going to compile our script and see if anything bad happens.E&eldct
| Compile. If you did exactly as instructed, and if | instructed you properly,
you will be pleased to see that everything succeeded. But my computer tells
me that | have an undefined symbol “ON” at line 17. Where’s line 177
Double-click on the word “ERROR” in the main GUI window, and notice
thatthe line “btn_led (1, ON)” gets highlighted in the Script Editor window.
The compiler is telling us it doesn’t know the meaning of “ON”.

Here’s what's happening. The panel, when it runs a script, knows that if
we say “1” it wants us to turn something on; it just doesn’t know that “ON”
and “1” are the same. So we have to tell it by adding this line:

which makes the whole script look like this:

Now try Build | Compile again (don’t forget t&aveyour work first).
Now it saysOkay...

So there’s our simple sample script. Go ahead and try to add some other
features, like turn the fader off from button 2 (hint, when we say “OFF” the
panel needs to hear “0”), for example.

GPC-3/Jan 2006 page 2-5

GP-8P/GP-16P SOFTWARE

Programming the Panel - Diving Deeper

The panel can also be used to interact directly with the system’s Logic
I/0 cards. The help file has an excellent example that shows how to emulate
a mic channel control panel.

In addition, there are several other system interactions that can be accom-
plished with the panel. We will develop an example here that shows those
features and also introduces the Script Wizard.

Begin by selectingile | Newto generate a new script. Let’s call this script
WS_ Control.ss. Once you've specified the script name iN¢hweFiledialog
box, theScript Wizard form pops up. Unlike in our earlier example, this time
we will work with the wizard.

To begin with, you will see th&utton 1 is highlighted in the tree view in
the left panel. Thus, anything we do in the right panel will apply to button 1.
Let’s program the first button to fire a salvo (in order for this to actually work,
you will need to have one or more salvos defined in the Wheatstone system —
see theWheatstone BRIDGE Generation Digital Audio Network System
Technical Manualor details on creating salvos). For now, suffice it to say that
you will need to know the number of the salvo you want to fire. SeleEirthe
Salvo radio button. You will seewvo parameterdor this function, labeled
Press andReleaseon the form. The help file explains what parameters are
for — here we will just use them. In the box aReess:enter ‘1’ (without the
single quotes) and in the box afieleaseenter ‘0’. What this does is to set
up the button so it will fire salvo 1 when it is pressed, and will not fire a salvo
when released. The button will be lit while it is pressed and go out when it is
released.

In the left panel sele&utton 2. In the right panel seleEtre Salvoagain.
This time puta ‘2’ in thé&ress:box and a ‘3’ in thReleasebox. When you
are done and the panel is running (a set of circumstances we will begin to
assume as we describe how a button operates in the following paragraphs),
pressing button 2 will fire salvo 2, and releasing the button will fire salvo 3
(assuming that you have created three salvos). This can be a useful feature.
Suppose you have a surface monitor output, such as the CR (Control Room)
output, that normally outputs to a set of powered speakers on the other side of
the room, but you occasionally want to hear the signal being monitored from
a set of nearfield speakers nearby. One way to make this happen is to set up
one salvoto attach the CR output to the normal speakers and disconnect it from
the nearfield speakers, and another salvo to do the opposite. Set up the button
to fire the second of these salvos when pressed and the first when released.
Now when you press the button the nearfield speakers are in operation (and the
normal speakers are silent) and when you release the button the normal
speakers kick in and the nearfields mute. Once again the button is lit while held
and goes out when released.

In the left panel sele&utton 3 and in the right panel selddbmentary
XYC. LetSource be the signal ID of some audio source in your system
(perhaps 33, which might be a mic signal) an®kttination: be the signal
ID of some audio destination in your system (perhaps 1031, which might be
a surface fader). And let’s say that source 32 normally connects to the fader

GPC-3/Jan 2006 page 2-6

GP-8P/GP-16P SOFTWARE

atdestination 1031. Press the button (itlights) and the fader source changes
from the mic on 32 to the mic on 33; release the button (it goes out) and the
fader source changes back to the mic on 32. If the fader normally has no
source, pressing the button connects the mic on 33 to the fader, while
releasing the button returns it to its normal unconnected state.

Now selecButton 4 andConnect XYC. SetSource:to 35 (we assume
this to be another mic for the purpose of discussionpPastination: to
1032 (yet another fader on our surface). Pressing the button will lightitand
make a connection between the mic signal and the fader. Releasing the
button will do nothing but turn its light off.

SelecButton 5 andToggle LIO (Momentary LIO is covered nicely
in the help file example alluded to earlier, which is reproduced in a future
section below). SeletED Drive: to belnternal . If we assume that input
LIO 5 (see later in this section) is currently off, pressing button 5 will turn
this logic input on, and pressing it again turns the logic input off. Nothing
special happens on button releases. The button is lit while the logic input
is on, and unlit when the logic input is off. By changinglte® Drive:
setting toExternal you can have the button’s light follow thetputLIO
5 rather than thmputLIO 5. The input LIO 5 always represents the state
of the toggle, whereas the output LIO 5 may or may not; it depends on how
you externally trigger the logic port corresponding to LIO 5.

SelecButton 6 andTally LIO . There are no parameters to set. When
output LIO 6 is on the button is lit, and when output LIO 6 is off the button
is extinguished. Pressing and releasing the button has no discernible effect.

SelectButton 7 andSurface Preset You must specify th8urf. by
number, from 1 to 8, corresponding to the surfaces you have defined under
Device Properties(discussed earlier). For the purpose of discussing this
example, | will assume that you want to fire a preset on a G-4 surface (the
significance of this choice will be revealed momentarily) with this button,
and that this is surface 1. So enter ‘1’ for $wef. parameter. The G-4
surface presets do not have names, so you must supply the presdtes
as the value of thereset: parameter. Valid numbers are in the range of 1
to 4; let’'s choose ‘2’. Pressing button 7 will fire preset 2 on surface 1. The
button will light while it is being pressed.

Now selecButton 8 and once again seleggtirface Preset This time
we will enter ‘2’ forSurf: and assume that surface 2 is, say, a G-6, which
hasnamedpresets (or events, as they are also referred to). Let’'s say an
operator has named his favorite preset ‘LateNews’, and you want him to
use button 8 to select his preset. So enter ‘LateNews’ aBrdset:
parameter. IMPORTANT: you must spell the preset nexaetlyas it's
spelled elsewhere in the system or the button won’t work. Pressing button
8 will fire the preset ‘LateNews’ on surface 2. The button will light while
it is being pressed.

We will leave the remainder of the buttons set to the default
None / Customsetting.

GPC-3/Jan 2006 page 2-7

GP-8P/GP-16P SOFTWARE

Startup Code

Itis often useful to have some code execute when a script starts. When
using the Script Wizard, there may be some startup code generated for your
script automatically in the STARTUP action. If you have additional code
that needs to run at startup, you can’tjust create another STARTUP action
in the user portion of the script. What you need to do instead is tell the
Script Wizard you'll be adding some startup code of your own.

In theScript Wizard left pane, scroll down tGustom Action Hooks
and press the little ‘+’ sign next to thatitem’s icon to expand it. Then select
Startup. Put a name of your liking in ti8ubroutine Name:box, such as
‘myStartup’.

Looking at Your Script

Time to say goodbye to the wizard — click on @te button. At this
time it might be constructive to print out your script. From the menu, select
View | Script Editor... to see your script. You’ll notice a bunch of stuff in
the upper panel, while the lower panel remains blank. S&led¢tPrint...
to get a printout of your script (if you don’t have a way to print, you’ll just
have to look at it on the screen).

The script starts with a bunch of comment lines (recognized by the
distinctive// that starts them off), and then a few variables are declared.
After this anaction named STARTUP is defined. Note the last line in
STARTUP sayséall myStartup (). Youwill need to define your
own action with the name myStartup. If you don’t, the script will not
compile correctly. Enter the following code in the lower panel:

Thisis avery simplactionthat will light button 16; because itis called
from the script’'s STARTURction, it will be executed when the script
starts up.

Please note that, since you have told the script (via the wizard) that you
want the button 6 LED to light according to the state of the LIO 6 logic
output, if you then went on to specify 6 as the button to light in myStartup,
rather than 16, you may or may not see button 6 light, since it depends on
the state of the LIO 6 output. Which conveniently brings us back to the
topic we promised to eventually cover, that of the LIO settings.

GPC-3/Jan 2006 page 2-8

GP-8P/GP-16P SOFTWARE

LIO Settings

We use the LIO settings to map a button or its LED to a logic port in
the system. These logic ports may be real (as are the one that we deal with
in this section) or virtual (as are the ones used in the example in the help
file).

First we need to use the XPoint GUI application to set up the logic port
that we will be using to light the button 6 LED. Let’s use the first green box
in the Source area of the XPoint program to set up a logic input to monitor
an external event, such as a switch or other closure. Right-click on the box
and seledtlodify Signal Definition from the popup menu. On tBgnal
Definitions form you will see that the signld is 1. Give the signal a
Name such as ‘Tally 6’ (without the single quotes). Sdlecfic I/O Only
and put a check in the box after the LIO nuniben thel.ogic 1/0O (1-6)
tab. Seflier, Rack, andCard to point to an existing LIO card, and select
an unused inpuRort # — we use an input because we are monitoring an
external event, such as a switch closure, and getting thatmteghe LI1O.

So seDirection toln. You can use pretty much aRynction selection;
I will use OnTally because it describes how the button’s LED will be
acting.Apply your changes in XPoint.

Back in the GP-16P Configuration tool, open frevice Properties
form and highlighOutput LIOs 1 — 8. We are going to map our just-
defined LI1O toOutput LIO 6 so we can light the button 6 LED as earlier
advertised. Put a check in the checkbox after Output LIO 6: and select a
Signal Typeof Source(since we set up the LIO in XPoint as a source), a
Signal ID of 1 (since that’s the signal id of the Tally 6 source we created),
and arLIO of 1 (since that’s the LIO number we used to point to the logic
port). ClickOK and the properties will be sent to the panel.

Finishing the Script

Now add any other code you might need to the script, compile it, and
send it to the panel. Start the script and verify the functions you've
programmed. Let me make just one more point to end this discussion.
Since we set up button 1 tofire asalvo, you'll notice thatthe BTN_1_PRESS
action has been defined in the auto generated section of the script. If you
want to do some additional thing when button 1 is pressed, you can'’t just
write another BTN_1 PRES&ction in the user portion of the script,
because the script can only have one instance of any action. If you really
wanted button 1 to serve multiple purposes, you would need to leave it set
to None / Customin the Script Wizard, then write your own
BTN_1 PRESSction, as was covered in an earlier section.

GPC-3/Jan 2006 page 2-9

GP-8P/GP-16P SOFTWARE

The Helpfile Example

As promised above, the example from the helpfile is duplicated here.

L1O Configuration Example

Setting up the LIOs properly in your system can be a daunting task.
This example is here to show how you could configure your GP-16P button
panel to work with a microphone source signal and provide some common
microphone type control.

For the sake of this example, let’'s assume that we have a microphone
source named “JOES MIC” in our system. We will be placing a GP-16P
button panel next to the announcer, Joe. We would like to use some of the
GP-16P buttons to provide Joe with remote ON/OFF, cough, and talkback
capability. We would also like a tally light from the console to indicate
when Joe is on air.

Configure the Signal

The first thing we need to do is configure the “JOES MIC” source
signal with some virtual LIO signals to perform these functions. The
following figure shows how the LIOs will be defined for “JOES MIC” in
the XP GUI.

Defining a virtual LIO signal only differs from defining a real physical
LIO signal in that we do not require real physical hardware for the 1/O.
Since the I/O is virtual and our GP-16P is emulating the hardware we wiill
point the LIO associated with JOE’s mic to an LIO card which is not
actually populated in the router rack. You must add an LIO card to your
“rack defs” dialog box, since this is the only way to reserve the tier, rack,
and slot numbers used for routing the logic. But the slot which you
allocated should not have a real LIO card inserted into it.

f\q Signhal Definitions

=]
Auidio Signal Lacation Logic 1/0 (18] | Lagie 140 (7-12) '

(~Audia Signal Tupe
F ;:; e e LI0 Enabled Tier Rack Card Chan Card Type Port # Direction Invert Function
* Source
= e i T = i 11 =g o |]
Id]10 ﬂ:i " Destination 1T r_—-”_‘] _I_‘Ec_m_l ,r In " Qut | [|Remln
I ame — v ﬁmﬁa - Lagic 10 ﬁ &n O 0ot | T | Rem0ff -
[JoES MIC | e e : e
Lacatian £~ Mt Diefined S O | | _L_?E'E_'_F'_.i3 2 & dn € Gut | [Cough |
[sTUDIDA C Logelmony 4 & [1 Z[E[eE]] Legein |J¢ E & e ow [Tekback]
e 5 5 (T o
outer [nbercannect |~ gpaan - ; et e
: E v 11 :”1 t; 1431 = Logic 10 ;B E S eou | !Uff]’ I]
; 5.1 Suround r- rj - J | X In : Out 'r aw &
; Define ...

gpply Laneel I Azzigh to Controllers I

GPC-3/ Jan 2006 page 2-10

GP-8P/GP-16P SOFTWARE

Things to take note of in this diagram are the signal number and the L1Os for each
logic function. The signal number and the LIO number will come into play when we
configure the logic I/O for the GP-16P.

Item to Note Type 1D
JOES MIC Signal Source 10
Remote ON LIO In 1
Remote OFF LIO In 2
Cough LIO In 3
Talkback LIO In 4
On-Tally LIO Out 5
Off-Tally LIO Out 6

Configure the GP-16P LIOs

Let’'s assume that we want to use the first four buttons on our GP-16P to perform
these functions.

Button Function Details

1 ON The Remote ON LIO will be triggered when the
button is pressed; the button LED will light|to
indicate that the channel is on air.

2 OFF The Remote OFF LIO will be triggered when
the button is pressed; the button LED will light to
indicate that the channel is off air.

3 Cough The Cough LIO will be triggered when the bufton
is pressed and released when the button is relpased,;
the button LED will light to indicate that the bufton
is down.

4 Talkback The Talkback LIO will be triggered when the bufton
is pressed and released when the button is released,;
the button LED will light to indicate that the bufton
is down.

GPC-3/ Jan 2006 page 2-11

GP-8P/GP-16P SOFTWARE

The Script Wizard assumes a one to one correlation between the LIO
number in the GP-16P device properties and the auto generated action
which the Script Wizard will generate. Therefore, we need to define the
LIOs in the device properties in the proper locations for the button
functions. The following figures show how we will define our LIO
properties in the GP-16P for this example.

Define the first four input LIOs to match the Remote On, Remote Off,
Cough, and Talkback LIOs for the “JOES MIC” signal. Take note that
these are configured as “Input” LIOs in the GP-16P since we are sending
this logicinto the router matrix.

Define the first two output LIOs to match the On-Tally and Off-Tally
LIOs for the “JOES MIC” signal. Take note that these are configured as
“Output” LIOs in the GP-16P since we are reading this logicof the
router matrix.

Also take note that the “Signal Type”, “Signal ID”, and “LIO” fields
are configured to match the values from the XP GUI signal definition
dialog box.

Device Properties

%5 Surfaces

% Input LIOs 1- 8

€5 Input LIOs 3- 16 Ensbled Sighal Type: Signalld LIO

(gowaoe | aton F O | O
rputboz M [f] Souce | w2
mputlin s & [+ Source | N E
[rput LIO 4 v !__"r_! Source I 10]___I 4
mputlins 1 [] = M =
[mput L0 B { LJ | ’]_-J |
[nput LIO 7 | | |_J I |]__] l
[mput LIO 2 { I_-_I | L_l |

Caricel | Help |

GPC-3/ Jan 2006 page 2 -—-12

GP-8P/GP-16P SOFTWARE

S Input LIOs 1 -8
05 Imput LIOs 9- 16 Enabled Signal Type Signal 1D Lo
@fﬂ Output LI0s 1 -8

@ Dutput LIDs 9 - 16 Dutpat LIO T v !;l Source I 10 !;l 5
Dutput LIO 2 73 l;! Source i 10 !_l B
Output LITH 3 [l;l flif e I ' !_! i
Duputliod: T[] o | T
ouptLios: T [o | N E
Ouputlio g T |- = | N
Duputlin 7. T[] | M E
Ouputling T[] e | = e

Cancel | Help |

Create a Script Using the Script Wizard

Now we want to use the script Wizard to generate a script for the GP-16P.

Configure the first and second buttons tdvbmentary LIO functions with
external LED drive. Then configure the third and fourth buttons tMbenentary
LIO functions withinternal LED drive.

= '@ Buttons s
@ Bittar 1
: @ Button 2 - Functiorn; ————— [Parameters:
% Button 3 r Mane # Custam LED Drrive: IE:-:tErnaI :J
% Buttond ™" Fire Salvo
i @ Button 5
-6 Buton 6 " Momentan 3T
--£#5 Buttan 7 " Connect #YC
6 Button 8 ' tamentan LID
i @5 Button 3 Toagle LID
i @5 Button 10 1 ;
. Button 11 ¢ TalyLio
-5 Button 12 " Surface Preset
. -G Button 13
2 R O = T Ty =
= =) 11 _PJJ
Cancel Help

GPC-3/ Jan 2006 page 2 - 13

GP-8P/GP-16P SOFTWARE

=& Buttons =] tan 3
£ @ Button 1
i ‘% Biuttor 2 - Function——————— Parameters;
i ’% Button 3 i Nope+ Custarn LED Dirive: !Internal ..T.!
i ‘% Button 4 ; ;
i [
: % Button 5 Fire S alwo
-5 Button B ™ Momerkary $v T
i ‘% Button 7 ™ Connect #YC
% Buiton 8 % Momentary LID
-3 Buton 3 " Tongle LID
i ‘@5 Buttor 100 | ~
i ‘@5 Button 11 ; Tally LIO
. 15 Button 12 " Surface Freset
i ‘@5 Button 13
FE I Lo+ o = T | ot T
o =T 11 _r_]—j

Cancel Help

The auto-generated script code for the first two buttons will assert the
input LIO while the button is pressed and de-assert the input LIO when the
button is released. The button LED will light to indicate that the corre-
sponding output LIO is active.

The auto-generated script code for the third and fourth buttons will
assertthe input LIO while the button is pressed and de-assert the input LIO
when the button is released. The button LED will light to indicate that the
button is down.

The following script will be generated. The button 1 and 2 actions
simply drive the LIOs and LEDs corresponding to the buttons. A periodic
timer drives the button 1 and 2 LEDs with the value read from the LIO
corresponding to those buttons. The button 4 and 5 actions simply drive the
LIOs and LEDs corresponding to the buttons.

GPC-3/ Jan 2006 page 2-—-14

GP-8P/GP-16P SOFTWARE

/FBE_START

ff ALl code bBetwesn the AG STARRT and AG END Tags ia auteo
fF generated and should not be modified.

ff Goript Geperator GUI W1.1:1

;th_HTH. TYFE="LIO_MOMENTARY" LED="1%"

fARE BTHZ TYPE="LIO_MOMENTARY™ I
ffAG_BTHJ TYFE="LIO_MODMENTARY" LED
fARE BTH4 TYPE="LIO_MOMENTARY™ LED="D0"

variakle: AG scrateh) Temparary scrateh pad variable fer AG actlone.

action: STARTUR
|

-

AG acratech = tme create pericdic (3, "AG TIMER _FUNC™)

action: AG TIMER FUNC
|

Dhn_Lﬂd i1, 1;n_qnt 1111
btn_led (2, lio get {21

acktion: BTH 1 PRESE
|
11:_se:]
I
action: BTH 1 BELELSE
|
11:_se: (]

action: BTH_Z_PRESS
lio_set [(Z,1)

action: BTHN_Z RELERSE
1

lia set (2,00

acktion: BTH 3 PRESE
|
btn led [3,.1)
Lio_set [3,1)
|
actian: ETH_!_?ELEAHE
|
Dhn_Lﬂd (3,0
liog st [3Z.0)

action: BTN_4_FRESS
|

ntn_:ﬁﬂ (4,0
lio as=t [4,1)

ction: BTN_4_RELERSE

_— -

btn led [(4.0)
115_5ﬂ: (4,0

/ /BG_END

GPC-3/Jan 2006 page 2 - 15

GP-8P/GP-16P SOFTWARE

Note: In this example we have seen how the Script Wizard associates
a button with the corresponding LIO from the LI1O definitions in the device
properties dialog box. This one to one correspondence is only a limitation
of the Script Wizard. If you are writing a custom script you may access any
LIO from any action or subroutine.

Changing the Panel’s IP Address

As promised, here’s how you change the IP address, if it becomes
necessary. First, know what you want the new IP address to be. Let’s
investigate a simple change, from 192.168.1.221 to 192.168.1.100. The
simplest way to do this is to set up a mini network with your computer and
the panel connected together through a hub. Using the hub removes some
complications that can arise if you're running Windows XP, and keeping
the system small and simple results in less clutter in the WSNetServer
screens.

Fire up the Wheatstone utility program WSNetServer. This program
can be found on your system install CD if you don’t have it on the computer
you're using now. When WSNetServer starts, you see the main program
window. The first thing you need to do is to “find” the panel. So select
Scan | Network...Up pops thé&letwork Scan Resultavindow, and you
should see a listing for MyPanel (or whatever name you’ve called your
panel), its MAC address, and its IP address.Thpe shows up as “???”;
thisis normal. Single-click anywhere along the line of text representing the
panel to highlight it. Then seldédit | Add Device...A message box pops
up that warns you of the consequences of having non-unique MAC
addresses co-existing on the same network. Glesk The next form to
appear is Bevice Settinggorm. ClickOK. That form goes away, leaving
behind theNetwork Scan Resultsvindow; clear this window from the
screen by clicking on the “X” in the upper right corner.

Information on the panel has now appeared in the WSNetServer main
window. You now need to select this device in the main window, but be
aware that you must click the entry in Thgoe column to select the device.
Now selectdit | Edit Device...The Device Settingdorm appears once
again. In my example, tHE Address: shows as 192.168.1.221. Change
“2217t0“100” and clickOK . The popup box informs you that the changes
will show up in the panel when you reboot it. ClOK.

VERY IMPORTANT: Do NOT exit from the WSNetServer program
until after the panel has been rebooted.

Unplug the panel’s wall wart, either from the AC power or from the
back of the panel, and then reconnect the power. WatcReabaests
columnin the WSNetServer main window; the value should be “0” before
you reboot the panel and will change to “1” as the panel reboots. If this does
not happen your changes have not been saved in the panel, and you need
to do it over.

GPC-3/ Jan 2006 page 2 - 16

GP-8P/GP-16P SOFTWARE

What's Next?

Read through the help file, try a few examples from there, then go
ahead and write the scripts you need. You can make life easier by
copying code from the help file and pasting it in the Script Editor.

GPC-3/ Jan 2006 page 2 - 17

APPENDIX

Appendix

GP-16P Configuration Tool Programming Guide

page Appendix —1

Wheatstone Corporation
Technical Documentation

GP-16P Configuration Tool
Programming Guide

* Programming Button Functions with the Script Wizard
» Creating Custom Scripts with the Script Editor

WV Vheat rtone Coreoration
600 Industrial Drive
New Bern, NC 28562
252.638.7000
www.wheatstone.com

Revision 1.1 — January 2008
Paul Picard

Table of Contents

1 Introduction
1.1 GP-xx Hardware CompatiDilityucecamuiiiiiiiieiiiiiieie e 3

2 What You Need to Get Started

2.1 GP-16P Configuration TOOI SOftWArecccceciiiiiiiiiieeieee e e e e e 4
2.2 Physical Network Connection
2.3 IP Address Settings

2.4 XPoint Softwarecccuvveeenn.

2.5 GP-16P HEIP Il ittt e e e e e e e e e e s s e s e st e e e e e e e e e aaaeaaaeasesaaeannnnnns

3 Using GP-16P Configuration Tool Software

3.1 Programming ProCedure SUMMAIYcccceeeerrriiirieeeeeeessasisssseunnrnnsnseeeereeseeeessessnnannnsnns 6

3.2 AAAING DEVICES ...cetiiiiiiieaeee it ettt ettt e et e e e e e e e aeeaa e e s s bnbbetbe e b e e eeeeaeaaaaaaaaens 6
3.3 TOQIE ON-LINE MOUEeuiiiiiiiiiiit ettt ettt et e e e e e e e e e e e e e e e nnneeeeeeeeee s 6
3.4 Create a New SCrIPt File ... a e e e 7
3.5 Script Wizard BUtton FUNCLIONS et e e 8

3.6 COMPIIE T SCHPL ...ttt e e e e e e e et e e e e e e e aaaaaaeaens 9
3.7 Starting the SCIPL .eveeiiiiiiiii e eeeee et e e e e et e e aaeeeeaeesssaasannnnnnrrnne 9
S T = 11T PSR 9
3.9 Reviewing the Script Wizard COUEoociieiee i 10

4 Configuring Device Properties

4.1 Surface ConfIQUIAtioNociiiiiiiiieeeee e e e e
4.2 Starting the DeVvice PropertieS DIalOQ .« rrrrrrrrrrriiirieeeeaeasiesiisssisnnneneeereeeraaaaeeessesnnn
4.3 LIO Configurationccccccevvevieimmmmnennnn.
4.4 Starting the Device Properties Dialog ...
4.5 DesSign PhilOSOPNYuuiiiiiiiiiiiii ittt e e et e e e e e aaaaaeeeas

5 LIO Example Using Device Properties

5.1 Configure the Source Signal in XPOINt ..occooiiiiiiiiiiiiiii e 14
5.2 Configure the GP-16P LIOSui ettt et a e e e e e e e e e e e e s enneaes 15
5.3 Create the Mic Control Script Using SCHPt ARoooovriiiiiiiiiiii e 17

5.4 Reviewing the Script Wizard COUE ... 18
5.5. Beyond the SCript WIZardeeiiiiieeiiiieiiiie e e e e e e e e e e e e e e ennnnaannreneeees 19

6 What is the Script Editor?

6.1 SCript EItOr FEALUIESceeiiiiiieeeeeeiiiiiteiee e e e et e e e e e e e e s e s s s s ss e e e e e e e e aaaaaaaeeasesaasannnnnns 20
6.2 Third Party EQItOrSuuueiiiiiiisimmmme e e e e s ettt e e e e e e eeeeeaesssssnsannb e s e e eeeeereeeaaaaeaeeeas 21

7 Creating Custom Scripts

7.1 Getting the EXample File ...
7.2 EXGMPIE SCIPE DESIGN ...ueiiiiiiiiiiiiieeaaaeiiitiete ettt e e et e e e e e e e e e e e e e s e s s aasb e e ee e e e e eeaaaaaaaaaaaaaaaaanan
7.3 Auto-generated Script Components
7.4 Custom Start UP SUDIOULINE........cooi ittt e e e e e e e e e e e e as
7.5 EXample SCrPt SLIUCLUIE ... eeeeee ettt e e e e e e e e st e e e e e e e e aaaaaaaaaaaaaan
7.6 Example Script —Variables and CONSIANTS. .ccceeereeieeeeiiiiiii e e e e 25
7.7 Example Script — SUBIOULINES ... coeeeeeiiiiec e e e neees 27
7.8 EXample SCript — ACHONS ..o ceeeee et r e e e e e e e e e 28
7.9 Custom Scripting SUGQESTIONSueeeiieiieiiiiiieereere e e e e e e e s e s sss s rerrereeeaeeeeeeessesenannnnnnnns 29

Table of Contents (continued)

7.10 Scripting ROULET CONLIOIooiiiiii ettt e e e 29
7.11 Scripting SUrface CONIOLooiiii it 29
7.12 BasSiC SUIMface fUNCLIONSoiii ettt e e e e e e e e e e e e e et e e e e e e aaaaaaaaaaaaaaan 29
7.13 Advanced Surface FUNCLIONS ... e e e e e e eeeee e 30
7.14 Example surf_talk COMMENTASuuueiiiiiiiiiiiiee et a e 30

8 GP16P Scripting Language Overview

8.1 CASE SENSILIVILY .iiiiiiiiiiiie ettt e et e e e e e e e e e e e e b e e e e e et e e et e e e e e e e e e e e e e e aa e nnnaarraee
S JZ 01 0] 11T o £ PN
TG T Yo i (o] PR OPP OO
8.4 GlODAl VArIADIEScooeiiiiiiitie e et e ettt e e e e e e e e e e e e e e e e et e e e e e aeaeeeaearaaa
8.5 Local & Static Local Variables
I G 10 1] = 1 TSP
G T Y ¢ =\ T

9 GP16P Scripting Language Structure

9.1 SCHIPL STIUCTUIE ...ttt et oottt ettt ettt e e e e e aaaeeaeaaaannnnbbebbssbeeeeeeeeaaaaaaaaaaaeaaannn 33
9.2 CoNnStant DECIATALIONSc.uuuiiiiii ottt et e e et e e e e et e e e e e ettt e e e e e et e eeseesanaeaees 33
9.3 Global Variable DeClarationNscceeeiiiiiiiiiiiiiie ettt e eaaans 33
9.4 Global Array DECIArAtiONSeii i eeeeetee e e e et e e e e e e e e e e e e e e e e e annneeeeeeeeeees 34
9.5 Local & Static Local Variable DeClarationNS. ceu....c.cuvueieeiiiiiieeeeeie e ee e 34
9.6 ACHON BOGIESceovviiiiiiiiieii e eeeeeeiice et e e e e e e e e ettt e e e e e e e e e e e e e e eeeeeeas st aeseeaeeaeeeeeeeeseeranas 34
9.7 ACHON PAlAMELEIS ...ceevvviviiieee s e e e e e e et et eeeta b eeaeeseeeeeeeeeeessaessaba b seeseeeeesesessrssrarannnns 35
9.8 SUDIOULING BOGIES ..uvuiiiiiiiiiiiieeeeeeeeeee ettt et e e e et e e e e e e e e e e e e e eeasbbaraannns 35
9.9 SUDIOULING PAramMELEISccoeieie ettt e e e e e e e e e e e e e et aa et aaeaeeeseeeeeseeesessabara e eeaeens 35

10 Script Debugging

0 T o [T aTo TR @] 4 g o1 =Tl i g (o] £
10.2 Third Party EAItorsccceeeeeee i
10.3 Using “Print” and Telnet t0 DEDUQG ... eiiieieaaeeei e

Appendix A
Al - Example Custom Script File — INterloCK16.SS . cc..evvveeiiiiiiiiiiiieeeeeee e 40

1 Introduction

This document will guide you through the procesprofgramming a GP-8 or GP-16 panel using
the GP-16P Configuration Tool software. This pridecument is aimed at familiarizing you
with the software’s fundamentals and quickly gettyour GP-xx panel up and running using the
point and click Script Wizard. The Script Wizardlveiutomatically generate computer code
based on your Button and Parameter selections.cbdis can be compiled and downloaded right
to your device from within the configuration tool.

Certain sections of this document use materialtémtan the GP-16P Configuration Tool
software’s extensive Help file.

1.1 - GP-xx Hardware Compatibility

The GP-8 and GP-16 are eight and sixteen buttaiores of the panel and use an identical
hardware platform. Scripts written for an 8 or 16tbn version will run on either one with the
obvious limitations stemming from the surplus aklaf buttons on the two panels.

2 What You Need to Get Started

Before you get started programming let’s reviewoaltihe miscellaneous software and connection
issues.

2.1 - GP-16P Configuration Tool Software

Make sure you have installed the GP-16P Configumaliool software that came with your
product’s install CD-ROM. If you do not have a coplease contact Wheatstone Technical
Support at 252-638-7000 and we will email or FT#® iyou.

This document uses screen shots from version Bui.the general process will apply to earlier
versions.

2.2 - Physical Network Connection
Editing of GP-xx devices requires a 100BTX Ethegwinection to the device. There are two
ways to connect:

100 BASETX LANhe GP-xx device and PC are connected to a cord@OBTX Ethernet
switch or hub typically with straight wired RJ-4abtes. This is the preferred method.

Peer to Peer a simple cross-over wired RJ-45 cable betweerPth and device. Note that when
the GP-xx device is power cycled Windows momentdaises the network connection and takes
a moment to recover.

2.3 - IP Address Settings
Make sure your PC is configured to talk to the GRranel. The following rules apply:

* The device’s IP address is printed on a label edfito the GP-xx panel .The default
factory IP address for GP devices starts at 19211531 with a subnet mask of
255.255.255.0.

* The PC running the GP-16 Configuration ToMUST be on the SAME subneias the
GP-xx device.

* For example if your GP-xx IP address is 192.1621 then the NIC's IP address must
be given a unique IP address on the 192.168.1 xiymed.

* WsNetServer softwares used to assign unique static IP addresses tox@@nels.

Important:
GP-xx IP addresses are assigned and changed using

WsNetServesoftware.
Please refer to the WsNetServer documentation foredails onchanginga GP
panel’s IP address.

2.4 -XPoint Software

The GP-xx panels may be programmed to control aaiiblogic signal cross-points, fire Salvos,
activate surface presets, and other functions. GPel6 Configuration Tool may require you to
enter Source and Destination signal ID’s, Salvexas, and other numerical data based on ID

numbers generated in XPoint. You will need accesbd XPoint software and your system’s
configuration to get the required information.

2.5 - GP-16P Help File

The GP-16P Configuration Tool software has an esxter\Windows Help Menu system. You
will definitely want to utilize this asset whileggramming as it can be an invaluable aid,
especially when creating custom scripts.

= Help

¢ &
Hide Back Print DOptions

Cantents]Iﬂdex 1§earch1

= ([MIGP-1BP GUI Operation
@ File Menu
[2] view Menu
[2] Build Menu
{2] Device Menu %
@ Help kenu
= @ GP-16P Panel Operation
= (1 GP-16F Device Setup
|ﬂ Device Definition
@ Surface Configuration
[7] LIO Configuration
@ uo Example
= (@ ScriptWizard
[7] Buttor Propetties
@ Startup Action Hook
[Script Compile & Download
=] Q Script Editor
@ GP16P Scripting Language

=l | B

Wheatstone GP-16P Configuration Tool

The GP-16P Configuration Tool (or GUI) allows you to easily

develop a uniquely customized button panel for your live broadcast

or production studios. The flexibility of your GP-16P button panel

comes about due to an architecture based on a virtual machine in =5
the button panel microprocessor which very efficiently executes
compiled bytecade. This GUI provides you a mechanism to develop

your unique button panel application.

You have access through this GUI to a point and click Script Wizard
which provides selection of typical functions for each button of vour
button panel. When the typical functions built into the Srcipt
Wizard fall short of your imagination, this GUI provides you with an
editor in which vou can write custom scripts in a programming
language somewhat like 3 cross between the C and Basic
programming languages. You do not need to be a computer
programmer to modify vour button panel application, since most
functions can be performed through the Script Wizard. When (if)
vou wish to take the leap to a custom script, an introductory level
of programming experience is all which is required to manually
write custom scripts.

Main Window

Maost of the main window of the GP-16F GUI is made up of an

output window. The output window displavs status, warnings and

error messages during execution. The title bar of the main window
shows a lot of information also. Besides the application name, the

title bar shows the name of the active GP-16P device, the online =

3 Using GP-16P Configuration Tool Software

OK, now that we have the network connection is$aksn care of we can start the GP-16P
Configuration Tool software and program the paogddrform some basic functions using the
Script Wizard. The general procedure we will fall listed below.

3.1 - Programming Procedure Summary
The steps required to program your GP-xx devicdisted below - let's review them and then

perform each in turn.

* Add the Device info to the GP-16P Software Tool
» Connect to the Device in Online Mode

» Create a New Script File

» Use Script Wizard to map functions to buttons

» Compile Script and Download to Device

e Start Script on the Device

e Test Functionality

If you haven'’t already done so, start the GP-16Rfigaration Tool Software

3.2 - Adding Devices

If you previously ran the software, use the | GP-16P Device Setup

Menu itemDevice->Devices. .to Add or

Selectyour GP-xx.

Marme: |r‘-"|.'r'|3 Fa

Note: If this is the first time you started the| IPAddress: | 192 . 168 . 1 . 22

software or there are no GP devices saved,
the first prompt window you will see asks
for a Device Name and IP address. Go

)4

Caricel

Help

ahead and enter this information.

3.3 — Toggle On-Line Mode

Click the menu choicBevice>On-Line Mode
Check that you are (On Line — Connected) in topité Bar.

File Wiew Buld Device Hep

BEPESES Cwmes
——————————— MyGFE-2

Devices... Ctr+D
Properties.., Ciri+P
Print Properties...

v On-Line Made:

Version..,
| Upgrade Software...

;fi&"m 7

Note: Certain
circumstances may
cause the software an
the GP panel to be ou

of “sync”.
“On Line-Connected”
reported when in fact
you are not connected.
When in doubt simply
toggle On Line mode
OFF and ON.

3.4 - Create a New Script File

Select the Menu iterile->New and theScript Wizardopens automatically, once you have
specified a file name for the new script.

TheButtonslist in the scroll pane on left side of the Wizédvhere you select which GP panel
button you would like to program. Simply click dretbutton name to select it.

The right side of the Wizard is where you selefttrection for the selected button. Go ahead and
click through the various Functions. You will na@ithat the Parameters field will display various
data entry fields depending on the function seted®arameters are usually integers that
correspond to signal ID numbers or Salvos as caorditjin the XPoint software.

Script Wizard - Test Some functions.ss
=& Buttons |# | @ Button 1
; —
:-®BUth:IH1 ..F t. . - .P t e
& Button 2 unchoR; aral.'ne n.ars.
i @ Bution =2 Mone HCustom Drestination: JH
gg:a Button 4 " Fire Salvo e J119
545 Buthon 5 T Momentan HrC %
.15 Buthon & % Connect 37T
6 Buthon 7 i T Momentany LID
-6 Button 8 Taggle LIO
: <5 Button 9 ¢ TalyLig
i @ BUtn 20 {° Surface Preset
%5 Button 11
L LS D e 10 _I__V__E
Sl 18|
] | Cancel Help

3.5 - Script Wizard Button Functions

The following functions may be mapped in any corabon to the GP-xx buttons. Note
that in some cases a button may perform actiorimtnthe Press and Release of the
switch. The Help file includes details; goGontents>Script Wizard>Button Properties
for more information.

Function Summary
None/Custom- select this if you are not using the button drwrite a custom script for the
button.

Fire Salvo—select this to fire a Salvo created in XPointteEthe Salvo’s Index number in the
Press and Release Parameters fields. Salvos ateatia XPoint and are simply a stored set of
one or more routes and/or disconnects. The finsioSa the XPoint Salvo list is index 1, second
in the list is 2, etc. You can have a differentvBdire on both the Press and the Release of the
switch. Use this function when you need multiplatghes” to happen simultaneously, like
switching speaker and HP feeds to a shared tadkostu

Momentary XYC- XYC stands for X-Y Crosspoint- this option issdsto momentarily interrupt
a destination with a new source. Useful for talkbacEAS, the interrupted Destination reverts
back to previous Source. Enter the Destination@marce signal ID numbers from your XPoint
configuration. Just mouse over the signal nameRoiAt to get its number

Connect XYGC- this function will make a one time X-Y Crosspgaioute. Enter the Destination
and Source signal ID numbers from your XPoint agunfation.

Momentary LIO—this function will trigger a logic connection Olhis function requires
mapping of the LIO irDevice>Properties see Section 4 or Help File for specific details.

Toggle LIO— this function with toggle the LIO state ON/OFEmweach press of the button. This
function requires mapping of the LIO Device>Properties- see section 4 or Help for specific
details.

Tally LIO — not available at this time — future: use thitutm the button into an indicator lamp.
The LED in the button will light when the logic adition is met.

Surface Preset use this to take a Preset on a Wheatstone tentiface. You need to specify
two parameters for this function:
Surf: - is the surface ID specified in tBevice-> Propertiesorm. Surface ID numbers
are mapped to the GP-xx panel using the menu chmeee->Properties...Enter an IP
addresses for each surface the panel needs totdtktering 1 for th&urf: parameter
will cause a button to talk to IP address assodiafieh Surface 1:in the list.

Preset -this parameter is case sensitive - Name of thed®? located on the surface.
Some surfaces like the G4 have only push buttansdex numbers 1-4 map directly to
the buttons.

3.6 - Compile the Script

Once you have mapped functions to the buttons y@ueady to compile the auto-generated
Script Wizard code and download it to the GP-xxgbafio compile, select thHRuild-> Compile
and Download menu choice.

If successful you will see the following feedbacktbe screen.

File “iew Build Device Help

LEHE KO SnPd &wt

wheatstone Programmable Panel Compiler "wsgppc’ wersion 0.2.0

Copyright 2005, Wheatstone Corp, All rights reserwved.

Compiling: C:“Program Files‘wheatstone’GPleP scriptsiPrimerscriptsiTest Some functions.ss
Okay ...

Downloading to "MyGP-8" 192.168.8.221

Dane. ..
b

3.7- Starting the Script Download Success

When theCompileandDownloadprocesses are

completed, you will be prompted to P

Start the new script — choose Yes to start it. u'/

Note that once the code is transferred into the ﬁ
Mo

Start the new script 7

GP-xx non-volatile flash memory, it will boot your

Script every time the unit is powered up. e

3.8 - Testing

Now its time to see the results of the code yolerdownloaded to the GP-xx panel.

Obviously, you can go to the button location asteln and watch for changes as you press the
buttons. An easy way to check many functions isaiee the XPoint software running while you
press the buttons. If you align the grid so thatgtgnals of interest are visible, you can watch as
temporary, or static connections are made. Yowevan watch as Salvos are taken to see
multiple connections change. This is handy whebulgging scripts too. Because the button code
is portable, you can develop multiple scripts usirgingle button panel in your office or rack-
room, verify the code works as intended, and thewmndbad the working scripts to the designated
panels in a Studio or Control room.

3.9 -Reviewing the Script Wizard Code

You can use the Script Editor to see the auto-geeer(AG) code produced by the Script
Wizard. To view the code select menu ité¢iaw->Script Editor...

Here is a sample Script and its code descriptions:

Wizard code starts here >
/I precedes all Comments.

Button types are listed as >
Comments

Define variables >

Startup action calls function to
set Button 6 LED on power up.

Action sets LED 6 to ON or
OFF depending on the state of
LIO 6 on power up.

Action lights BTN1 LED and
Fires Salvol.

Action clears BTN1 LED on
BTN1 release.

Action lights BTN2 LED, Stores
Source ID patched to Dest 22,

then connects Source 119 to Deg
22.

Release Action clears BTN2
LED then restores the stored
Source IF >0 to Dest 22.

A disconnect is performed if the
stored Source is = to zero.

= B

/7 The gray window box above this area is for Autogenerated Script Wizard code -

Al

5 | B

10

4 Configuring Device Properties

Some applications may require the GP-xx panellkottacontrol surfaces or interact with certain
signals that have logic functions mapped to theon.istance you may wish to take a Preset or
turn a channel ON and OFF on a surface. You migotwish to use the GP-xx panel at a talent
microphone location in a studio. These applicati@ugiire you to “tell” the GP-xx panel some
information about the surface and logic signalds Thwhat the Device Properties form is for.

4.1 - Surface Configuration
If you are using your GP-xx button panel to integfavith a Wheatstone surface, you will need to
setup your GP-xx button panel with a list of eaatiege to which it will communicate.

The setup steps only need to be performed once #iecsetup information will be stored in the
button panel's Flash memory and on your PC. Stiealevice which you wish to setup, then use
the "Device Properties" dialog box to specify theface IP addresses.

4.2 - Starting the Device Properties Dialog

Start the Device Properties Dialog by clicking"@evice" & "Properties..." on the main
window menu, or by pressing tek€TRL>-P keys. The following dialog box will appear. Select
"Surfaces' in the tree on the left side of the dialog box.

TDevice Properties - MyGP-8

7% Surfaces ¥ Surfaces
¢ InputB_bs 1-8
@ InputLios 9- 16 Suface 1: | 192 . 168 . 1 . 11

@ OupUtLIOS 1-8 g pare o | 192188 112
¥ Output LIOs O - 1¢

Surface 3

Surface 4

Surface B

Surface ¥

3
|
Suface 5 |
|
3
|

Surface 8

k. | Canicel | Help |

You may specify up to eight surface IP addressks.tdp IP address corresponds to surface "1"
in the surface interface functions. This addredisheiused when you specify a "surfid" of "1" in
any of the surf_xxx functions within your scriptswehen you select the "Surface Preset" option

11

in the Script Wizard. The second IP address fragrtolp corresponds to surface "2", the third
from the top is surface "3", etc. Unused surfatesikl be left blank.

Note: The controls will be disabled if you anet connected to the GP-16P device. If you are
disconnected, you are actually looking at the depioperties which are stored on your PC's hard
drive. These properties may not truly reflect theperties of your device, if the device has been
more recently configured from another PC.

4.3 - LIO Configuration
If you are using your GP-16P button panel to imtegfwith Logic /0 on your Wheatstone router,
you will need to setup your GP-16P button panehwitist of each LIO which it will access.
* LIO configuration done here maps pre-defined XPsighal logic to GP buttons for
Script Wizard programming. LIO1 maps to buttonIOPImaps to button2, etc.
» Custom scripts can access any of the 16 input tpuolLlO’s.
» Virtual LIO’s may be created so you don't eat uy physical logic i/o. Add a phantom
logic card to a rack in XPoint. See section 5 olpHer details.

The setup steps need to be performed each timergate a new script for a panel using mapped
logic. For example, Panel 1 is for the Host mic ases Source ID 10, Panel 2 is Guest 1, Source
11. UpdateDevice Propertiebefore you script the Guest panel.

4.4 - Starting the Device Properties Dialog

While CONNECTED-ONLINE - Start the Device Propestigialog by clicking oriDevice" &
"Properties..." on the main window menu, or by pressing4@IRL>-P keys. The following
dialog box will appear. Select one of the LIO iteimshe tree on the left side of the dialog box.

=,

rDevice Properties - MyGP-8

#5 Surfaces lnput LIOs 1-8

% Input LIfs 1 - 8 ot ST N
%5 Input Lié 9- 16 nabled aignal 1ype igna

@ Oouput LIos 1-8 InputLIO 1: ¥ | =] souce |
¥ Output LIOs O - 1¢ Input LIO 2: & souee |7

195

<l

[nput LIO 3 v |j Source |J 3
Iput LI 4: ¥ =] Souce | EREI
rputln s T [+ sowee | 1 [=] 1
[nput LIO B [|j Source | 1 |j 1
rputln . T [=] sowee | 0 1 [=] 1
et D& T [~ Souwce | 1=

k. | Canicel | Help |

You may map up to 16 Input LIOs and 16 Output LI@%e for each switch on a GP-16.
Input LIOs correspond to Logic I/O values which &é IN to the router matrix. Typical types of
input LIOs would be from switches like ON,OFF, Chugalkback, remote logic signals

12

associated with a microphone source. In a distratdwired system these signals would typically
come from a button on the announcer’s desk thded@to an input logic line on an LIO card in
your audio router.

Custom scripts for your GP-16P can drive input LIB&g thdio_set()function.

Output LIOs correspond to Logic I/O values which tad OUT of the router matrix. Typical
types of output LIOs would be machine start, maglsitop, and ON and OFF tally logic signals
to drive remote panel switch LED’s associated withicrophone source. In a discrete hardwired
system these signals woulgpically come from an output logic line on an Lé@rd in your
audio router then feed to a logic line on your awdtion system or to a switch’s LED.

In your GP-16P you can read output LIOs using itheglet() function.

The first input LIO corresponds to LIO id "1" inghio_set() function, the second to LIO id "2",
etc.. The first output LIO corresponds to LIO id T the lio_get() function, the second to LIO id
"2", etc..

Note: The controls will be disabled if you are not coctee to the GP-16P device. In this
situation you are looking at the device propentgch are stored on your PC's hard drive. These
properties may not truly reflect the propertieyadir device, if the device has been more recently
configured from another PC.

4.5 - Design Philosophy

During the design of the GP-16P we went back arith fan the merits of making the LIO
definitions a device property and using properbldandexes in the script function calls vs.
specifying the LIO definitions directly in the satifunctions. We felt that the first approach
would provide greater value in that if your insdibn contains several GP-16P panels with
similar functionality, you can use one script forad the GP-16P button panels and just modify
the device properties of each GP-16P.

Note: When you specify input LIOs for the GP-16P, yoll typically select a logic line which is
also configured as an input LIO in the XP GUI paogr You can point one of the GP-16P input
LIOs at a logic line which is configured as an autplO in the XP GUI, and the GP-16P will
happily drive it. The negative side of doing thisthere might also be another GP-16P or a
physical logic card driving the same output LIOeTrbuter has very extensive rules to arbitrate
who is driving output logic. These rules are badkidaypassed, if you adopt the mixed direction
approach. It's much safer to define a new signahhas an input logic line, drive the new
signal's input logic line with the GP-16P, then mect the new signal to the signal which has the
output logic and let the router apply it's ruleshte signal routing.

Note: When you specify output LIOs for the GP-16P, yadll twpically select a logic line which
is also configured as an output LIO in the XP Gtfigsam. You can point one of the GP-16P
output LIOs at a logic line which is configuredasinput LIO in the XP GUI, and the GP-16P
will happily read it.

13

5 LIO Example Using Device Properties

Before we get on with the following example you sldounderstand that there are two primary
ways to approach remote control of a surface cHaraneg the GP-xx panel. You can use a
custom script to control specific fader channaln a surface or you can use the Device Properties
to “point” the GP panel to specific source signawhich has been configured in XPoint with

logic associations. The difference may appear tsubéle but it really dictates how your overall
script will be written. The former uses surfacedtions in a custom script while the latter uses

the Script Wizard.

This Help File example describes a relatively carphethod using the Device Properties LIO
mapping feature. The method requires mapping Ld@i¢ in/out) resources to a virtual Logic
card in XPoint, then these pre-defined LIO’s argop& to physical GP-xx panel buttons using
the Device Properties form in the GP-16P Configaral ool software. Finally, the Script
Wizard is used to generate the script. This apprbas two benefits- the resulting script is very
clean and the GP-xx panel follows the microphanece signal to whichever surface it
connected to.

For the sake of this example, let's assume thdtave a microphone source named "JOES MIC"
in our system. We will be placing a GP-16P buttangd next to the announcer, Joe. We would
like to use some of the GP-16P buttons to provigewith remote ON/OFF, Cough and Talkback
capability. We would also like to have the GP p&®N/OFF button LED’s follow the

console’s fader status.

5.1 - Configure the Source Signal in XPoint

The first thing we need to do is configure the "BIIC" source signal with some virtual LIO
signals to perform these functions. The followiigufe shows how the LIOs will be defined for
"JOES MIC" in the XPoint GUI.

%Signal Definitions -JoE3

Audio Signal Location Logic 140 [1-6]] Lagic /0 [7-1 2]]

Audio Signal T
el S TR LIO Enabled Tier Rack Card Chan Card Type Fort # Direction lrwvert Function
+ Source

™ Destination L N :|¢ IE”E”—_I Logiz 10 1 = & In ¢ Ow [|Remdn -
Id 10 -

. PR I P | B 1= Logic 10 2 & & In ¢ Ou [|RemOr A
I:JDE!? MIC Mot Defined IV |2 3 =9 = Logic 10 3 F & n e 0wl |Cough -
ocation . = = = " -

’W ~ Logic1/00n| 4 W |2 3|7 39 = Logic 10 4 F| & In " Out [|Takback -
+ Mona E w2 21 2fla = Logic 10 1 #| ¢ Ine Out [|OnTaly -
™ Steren

I P ’ E v |2 %1 %3 = Logic 10 2 | In & 0w [|OTaly -
1 Surrour
I [% Define ...
Apply | LCancel | Agszign to Controllers |

Defining a virtual L1O signal only differs from defng a real physical LIO signal in that we do
not require real physical hardware for the 1/0.c8ithe 1/O is virtual and our GP-16P is

14

emulating the hardware we will point the LIO asateil with JOE's mic to an LIO card which is
not actually populated in the router rack. You nadd an LIO card to your "Rack Defs" dialog
box, since this is the only way to reserve the f;TRack & Slot" numbers used for routing the
logic. But the slot which you allocated shoulgt have a real LIO card inserted into it.

Things to take note of in this diagram are the @ignmber and the LIOs for each logic function.
The signal number and the LIO number will come jpliy when we configure the logic I/O for
the GP-16P.

Item to Note Type ID
JOES MIC Signal Source 10
Remote ON LIO In 1
Remote OFF LIO In 2
Cough LIO In 3
Talkback LIO In 4
On-Tally LIO Out 1
Off-Tally LIO Out 2

5.2 - Configure the GP-16P LIOs

Let's assume that we want to use the first foulobston our GP-16P to perform these functions.

Button | Function Details

1 ON The Remote ON LIO will be triggered when the buti®pressed, the button
LED will light to indicate that the channel is oin.a

2 OFE The Remote OFF LIO will be triggered when the buipressed, the button

LED will light to indicate that the channel is @fit.

The Cough LIO will be triggered when the buttopiessed and released
3 Cough when the button is released, the button LED wglhtito indicate that the
button is down.

The Talkback LIO will be triggered when the butismpressed and released
4 Talkback when the button is released, the button LED wglhtito indicate that the
button is down.

The Script Wizard assumes a one-to-one correldgtween the LIO number in the GP-16P
device properties and the auto generated actioohvithie Script Wizard will generate. Therefore,
we need to define the LIOs in the device propertidhe proper locations for the button
functions. The following figures show how we wikfthe our LIO properties in the GP-16P for
this example.

15

rDevice Properties - MyGP-8

Define the first four
input LIOs to match
the Remote On,
Remote Off, Cough
and Talkback LIOs
for the "JOES

MIC" signal.

Take note that these
are configured as
"Input” LIOs in the
GP-16P since we
are sending this
logic into the router
matrix.

Define the first two
output LIOs to
match the On-Tally
and Off-Tally LIOs
for the "JOES
MIC" signal.

Take note that these
are configured as
"Output” LIOSs in
the GP-16P since
we are reading this
logic out of the
router matrix.

¥ Surfaces #lInput LIOs 1-8
Input LIfps 1 -8 _ :
% It L a-16 Enabled Signal Type Signal |0 LIO
Output LIOs 1-8 InputLIO T vV |+] Souce 0+ 1
BOuputlos 9-1 ypin2 W [<] Sowes | 10 [<] 2
putlID2 ¥ [~ Souce | 0~ 2
putlin g ¥ [+ sowee | 10 [S]14
putL0s T [+ Sowee | 1 [=] 1
Input LIO & [|ﬂ Source | 1 |j 1
putli0 7 T [=] sowee | T [+ 7
~ pubog T [~ Souce | 1[=]
>
ITI Cancel | Help |
Device Properties - MyGP-8
¥ Surfaces %5 Qutput LIOs 1-8
6 Input LIos 1- 8 _ _
% Input LIOs 9 - 16 Enabled Signal Type Signal |0 LIO
5 OutputLIos 1-8 OuwpuwliDl: V¥ | =] Souce W[+ 5
BOwputLIos 8- 1 qupgnz @ [« Sewes | 10 =] &
OuputlD T [~ Souce | T = 1R
Ouput LD 4 T [+ Sowee | 1 [=] 1
OuputUOS: [~ [+ Sowee | 1 [=] 1
Cutput LIO & [|ﬂ Source | 1 |j 1
Ouput D7 T [=] sowee | T [+ 71
~ OuwputlD® T [~] Souce | 1=
>
ITI Cancel | Help |

Important Distinctions

* The "Signal Type

, "Signal ID" and "LIO" fields ao®nfigured to match the values from
the XP GUI signal definition dialog box.

e The LIO field value, 1 through 12, is NOT the Lo@lard’s port number, but the
LIO Enabled# in the Signal Definitions form.

16

5.3 - Create the Mic Control Script Using Script2ahd

Now we want to use the Script Wizard to generaterigt for the GP-xx.

Configure the first and second buttons tdEmentary LIO functions withExternal LED

-,

Parameters:
LED Drrive:

drive.
Script Wizard - Mic-panel-example.ss

=3 Buttons » | ¥ Button 1
@Butionl | | _
% W Function:
%5 Button 3 " Mone / Custom
% Button ¢ " Fire Salvo
5 Button 5 " Mamertary $vC
%5 Button 6 {" Connect =T
%‘ Button ¥ + Momentary LIO
@ Button 8 " Taggle LI
@ Button 9 ™ Taly LID
® Button 10 {" Surface Preset
%5 Button 11 -

< FES R e 1.7}:.

o]

External

Cancel

Help

Then configure the third and fourth buttons tdvbementary LIO functions withinternal LED

drive.

rScript Wizard - Mic-panel-example.ss

-,

- Butions
¥ Button 1
%5 Button 2
5 Button 3
5 E.uﬁﬂ 4
¥ Button 5
%5 Button 6
5 Button 7
¥ Button 8
¥ Button 9
%5 Button 10
5 Button 11

™ i

| ¥Button 3

Function:

Mone / Customn
Fire Salvo

b omentary #7C
Connect XvC

b omentary LIO
Toggle LIO
Tally LIO

Surface Prezet

DN N R N

i N

W
S Rt 17 !

Parameters:
LED Drive: | Internal j
(] | Cancel Help

17

5.4 - Reviewing the Script Wizard Code

The following script will be generated. The buttb@& 2 actions simply drive the LIOs and LEDs
corresponding to the buttons. A periodic timer dsithe button 1 & 2 LEDs with the value read
from the LIO corresponding to those buttons. Thedou3 & 4 actions simply drive the LIOs and
LEDs corresponding to the buttons.

IIAG_START//AG_START

/I All code between the AG_START and AG_END tagauso
I/l generated and should not be modified.

/I Script Generator GUI V1.1.1

//IAG_BTN1 TYPE="LIO_MOMENTARY" LED="1"
/IAG_BTN2 TYPE="LIO_MOMENTARY" LED="1"
/IAG_BTN3 TYPE="LIO_MOMENTARY" LED="0"
/IAG_BTN4 TYPE="LIO_MOMENTARY" LED="0"

variable: AG_scratch // Temporary scratch padalde for AG actions.

action: STARTUP
{

}
action: AG_TIMER_FUNC //LIO 1 and 2

AG_scratch = tmr_create_periodic (3, "AG_TIMBERINC")

btn_led (1, lio_get (1)) // get LIO 1 valueddight LED1 (ON) if true
btn_led (2, lio_get (2)) //get LIO 2 value dight LED2 (OFF) if true

}

The auto-generated script code for the first twitdms will assert the input LIO while the button
is pressed and de-assert the input LIO when thermid released. The button LED will light
from the results of the periodic timer query intggtabove..

action: BTN_1_PRESS //mapped as REMOTE ORavice Properties
lio_set (1,1)

}

action: BTN_1_RELEASE

lio_set (1,0)
}

action: BTN_2_ PRESS //mapped as REMOTE OFbBénice Properties

lio_set (2,1)

}
action: BTN_2 RELEASE

lio_set (2,0)
}

18

The auto-generated script code for the third andtiicbuttons will assert the input LIO while the
button is pressed and de-assert the input LIO winreibutton is released. The button LED will
light to indicate that the button is down.

action: BTN_3 PRESS //mapped as COUGIDavice Properties

btn_led (3,1)

lio_set (3,1)
}
action: BTN_3_RELEASE

btn_led (3,0)
lio_set (3,0)
}

action: BTN_4 PRESS //mapped as TALKBACKD®vice Properties-puts surface fader in
/ICUE speaker
{

btn_led (4,1)
lio_set (4,1)
}
action: BTN_4 RELEASE
{
btn_led (4,0)
lio_set (4,0)
}

/IAG_END

Note:

In this example we have seen how the Script Wiaasbciates a button with the corresponding
LIO from the LIO definitions in the Device Propeidialog box. This one-to-one
correspondence is only a limitation of the Scripzavd. If you are writing a custom script you
may access any LIO definedDevice Propertiesrom any action or subroutine.

5.5 - Beyond the Script Wizard

The Script Wizard is a nice way to get some fund#aldeatures up and running quickly and
will suffice for many broadcast applications. Certapplications with multiple panels in which
actions are triggered under Boolean conditionsady# more complex and will probably require
some head scratching and, you guessed it —a cisstidon.

19

6 What is the Script Editor?

The Script Editor is a specialized text editor bmito the GP-16P Programming tool. This editor
provides a convenient way to write custom scripis @aso view Script Wizard code.

GP-xx scripts are actually specially formatted fdgs saved with a “.ss “ file extension.

The Script Editor automatically separates the $&zard code from your custom code by
dividing the file into two panes — the top “readydmpane has a gray background and houses the
AG or auto generated Script Wizard code. The botftane is the editable text editor pane used
for writing your own scripts.

6. 1 Script Editor Features
Script Wizard code is separated and displayed‘iead only” pane.
e Script text is displayed in a “context sensitivelar scheme with comments in green, and
keywords in blue.
e Standard text select, cut, copy, paste, undo, edal functions.
e Compiler error finder jumps the cursor to probléne lwhen the reported error is clicked.

A The gray window box above this area is for Autogensrated Script Wizard code - do not Edit that code. & |

A4 This space is where you create your own actions and Sub Routines.
A/Declare Variahles first

A4 wariable: myvariable

LTI AT

AAPut Subroutines next

J/subroutine: mysubroutine

A4 my subroutine code here

j//;V/ffﬁ///f/fﬂ///f/fﬂ//f

A/Place Actions last

V4 action: MYACTION

v _

i//' my action code here
IR 00040

£

20

6.2 Third Party Editors

Scripts may also be opened, written, and editedgrogramming oriented editor but care must be
taken to be sure that the file structure, formgttamd script syntax is maintained. Avoid using
generic text editors like Notepad or Wordpad forptccreation. You will know right away at
Compile time if there is a problem

If you plan on doing a lot of scripting you mighirsider using a third party programming editor.
Notepad++ is a nice freeware editor. When you @@ script in Notepad++, you can choose a
“Language” skin, like “Flash actionscript”, thatlirgive you line numbers and a context sensitive
text color scheme. You will still have to open fte in the GP16P tool before you compile — be
sure to save the file in the editor first.

You can do an Internet search for “Notepad++" tavdlmad this editor.

21

7Creating Custom Scripts

A good way to learn how to write custom scriptthimugh experimentation - so we will open a
custom script and examine the format and syntakeofile. Then feel free to edit button behavior
and add features. You can also use the Script Wiregenerate code to see specific function
examples, then copy and paste into a new fileudhér experimentation.

7.1 - Getting the Example File

The example script file, interlock16.ss, is locatedppendix A of this document and may be
copy and pasted into the Script Editor user’'s windGopy and paste details are located in
Appendix A.

7.2 - Example Script Design

The custom script used in this example is desigoedt as an “interlocked” source selector with
latching LED indicators. Each button will “patchfi audio Source to a common Destination and
light the button’s LED on the panel. The buttonBmust be “latched” ON so the operator
knows which button is currently selected. “Inteled” simply means that with each button press
the previous source and LED are disconnected anceataced by the current button press. In
logical terms the 16 switches and LED’s are “exe@©R’d".

Open the Script Editor by choosiNgw->Script Editor...

¥ Script Editor - interlock16.ss Q@]
M

A IMG_START

A4 A1 code between the AS_START and AS_END tags is auto
A4 generated and should not be modified.

A4 Script Generator GUI wWi1.1.1

wvariable: AG_scratch // Temporary scratch pad wariable for AG actions.
action: STARTUP
i

h
A0 END

j/ R R A L A A A R o R AR .

A4 Custom Interlock switch code

f B e R e o e e o R R]

constant: OH = 1

constant: OFF = 0

wariable: Ted_num = 1
wariable: switch = 0
wariable: source = O
wariable: current_switch = O
wariable: Tast_led = O

L R R A A R g A

A4 Map the destination you want to switch sources to here
ffww

constant: dest_a = 1/ select destination id# in router for this 16x1 Tine selector

R R R R R R R AR RN R R R TR

S/map source signal id's to buttons 1 through 16

L D g e ok b Lk Ll e S gy R & £ 2L T L e R

constant: sourcel = 11 Afchange the 11 to another Source signal id# as required bl

22

7.3 - Auto-generated Script Components
Notice that the first section of the custom schig$ a few lines of auto-generated code. These are
minimum startup lines and must not be altered tated.

IIAG_START

/I All code between the AG_START and AG_END tagauso
/I generated and should not be modified.

/I Script Generator GUI V1.1.1

variable: AG_scratch // Temporary scratch padakde for AG actions.

action: STARTUP // The startup action is empty hseablank a new file has no Start requirements.

{ /I ' You can use the Script Wizard to point thiartup to your own startup subroutine.
} /[See the next section for details.
/IAG_END

7.4 - Custom Start up Subroutine

Let's digress for a moment- sometimes you mighttwanr panel to startup in a special state
prior to any button actions. Or perhaps the LER'géur design are being driven from remote
logic states and you'd like to synchronize thenpower-up of the GP —xx panel.

Use the Script Wizard’'s Custom Action Startup digo point to your startup subroutine. In the
case below we will call “mystartup” subroutine whee GP-panel powers up.

Script Wizard - example-startup call.ss .W
FEeutton 7 | ¥ Startup
5 Button 8
#5 Button 9 Subroutine M ame: |l'l'l_'r'3t~f'lftul2I
%5 Buthon 10 Mot
<& Button 11 oes _ o _
Buthon 12 You musgt defing all action haaok, subroutings in pour custom scnpt code,

@ Lol athenwize you will get unresalved subrouting emrorz when the scnpt iz
%5 Button 13 compiled.
¥ Button 14
%5 Button 15
5 Button 16

- Custom Action
¥ Startu

£ >

k. | Canicel Help

23

Resulting code with new subroutine and some streactamments added.

/IAG_START

/I All code between the AG_START and AG_END tagauso
/I generated and should not be modified.

/I Script Generator GUI V1.1.1

/IAG_HOOK TYPE="STARTUP" ACTION="mystartup"

variable: AG_scratch // Temporary scratch padakde for AG actions.

action: STARTUP
{

}
/IAG_END

/Iaa * *% * * *kk * *% * * *% * *kkk * *%

/I Custom Script starts here

//*** kkhkkkhkkhkkhhkkkhhkhkkhhhhkhhik
/[Define global variables first

/IDefine Constants next

/IDefine actions and subroutines last

call mystartup ()

/I The subroutine “mystartup” is called by the AG@le's STARTUP action
/lwhen first powered up or the Script is re-started

subroutine:mystartup

{

/lput your startup code here

}

/I Custom Script ends

7.5 - Example Script Structure

Now back to the Example interlock16.ss script filae first thing you will notice in the example
script is a comment. Comments are extremely useftthey help you and anyone else working
with the script understand and decipher what isgon. Comments must always start with a
double forward slash

/lthis is a comment line

Comments are ignored by the compiler and can aoatay characters. You can have as many
comments as you'd like in your script.

24

Scripts must follow a certain format in order fbetcompiler to evaluate it correctly. The
example script follows this format:

» AG Start code — auto-generated code from the wiaadda basic startup action.

» This code must be present even if you plan ontieg@ll of the button functions and
generally should not be modified. This code is atiplayed in the Script Editors top
window. The top window does not allow editing.

» Constants and variables - define all your constamtisglobal variables first. Example
constants are Source or Destination signal ID nug)lveords that make your script
easier to read and write like ON- OFF, LEDS5, eton§tants are fixed and never change
during run time. Variables may be local or glomascope and may be modified during
runtime.

* Global variables are listed at the top along wihstants and are “visible” anywhere in
the script.

» Actions and Subroutines- next comes the main coesrof your script. It does not
matter which order you put these in but it makesedo keep all button actions together
for readability.

* Local variables are defined within the curly braogan action or subroutine and are only
“visible” within that action or subroutine

Let's look at the example code in sections.

7.6 - Example Script —Variables and Constants
The example script needs to know which switch ésped and when to light its LED. We also
have to map the destination we want to route todsfithe the sources to be switched.

You seldom know all the variables your script watjuire when you begin, so just add them here
at the top as you go. It makes sense to groupicesdsiables according to how they are used in
the script. This can make reading and deciphehagstript easier now and when you have to edit
it a year from now!

/I Custom Interlock switch code
//*** kkkkkhkkkkkkkhhhkhhkhhhhhhhhhhhhhhhrx

*

variable //intentional error - no colon after therd variable -no variable name
constant: ON =1

constant: OFF =0 /I Constants cambe&d in with variables as you see fit.
variable: led_ num =1

variable: switch =0

variable: source = 0

variable: current_switch =0

variable: last_led =0

25

Comments added to the Constants section help rifiagdditotice how the Destination and
Sources are defined as constants. These signalriibers could have been “hard coded” as
numbers in the Action section but are easier toifyaal the future by listing here. Additional
comments could include the Source signal namegioin or the constant names could even be
the Source signal names — whatever makes the st $0 you the programmer.

/Iaa * *% * * *kk * *% * * *% * *kkk * *% * *kk

/I Map the destination you want to switch sourcekedre
//*** kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhhkhkhkkkx

constant: dest_ a=1 // select destination id#irter for this 16x1 line selector

/Iaa * *% * * *kk * *% * * *% * *kkk * *% * *

/Imap source signal id's to buttons 1 through 16

constant: sourcel = 11 //change the 11 to anotherc8 signal id# as required
constant: source2 = 12

constant: source3 = 13

constant: sourced4 = 14

constant: source5 =15

constant: source6 = 16

constant: source7 = 17

constant: source8 = 18

constant: source9 = 109

constant: sourcel0 =110

constant: sourcell =111

constant: sourcel2 = 112

constant: sourcel3 =113

constant: sourcel4 =114

constant: sourcel5 =115

constant: sourcel6 = 116 //change the 116 to ansthece signal id# as required

26

7.7 - Example Script — Subroutines

The example script uses two subroutines — oneridlbahe switch presses and one to store the
last switch pressed so it's LED can be turned OfrB subsequent switch press. Note that a
custom startup routine was not included. Try wgtmstartup subroutine that figures out which
source is currently feeding “dest_a” and then lidjiet appropriate button’s LED.

The first subroutine — handle_sw_press - is ddiethe Button Actions defined at the end of
the Script. Button Actions “pass” two variables,&1d $2 to this subroutine.

This subroutine:
* Modifies the value of “switch” to equal $1 and “soe’ to equal $2.
* Turns OFF the previously selected switch’s LED.
» Calls subroutine to store the currently selecteitcwumber.
* Connects the currently selected source.
» Lights the LED in the currently selected switch.

This subroutine includes #tint” statement to print a message to a Telnet winddeasp see
the Script de-bugging section for details on u$tnigt and Telnet.

//***********************

/I Subroutines
//***********************

subroutine: handle_sw_press //This subroutine duest of the work.
/It receives switchdidesource info from the button
/lpress actions.

switch = $1 /I $1(reads “string one”) e tswitch number passed here when subroutine dajled
/I action.

source = $2 I1'$2

btn_led (last_led, OFF)

call store_switch (switch)

connect (dest_a, source) //dest_a is a fixstirdgion defined above as a constant

btn_led (switch, ON)

print ("connecting Source ID " # source # " tedD" # dest_a#".")

The second subroutine simply receives a variallgeyéswitch”, and stores it. Note that this
could have been done in the “handle_sw_press” sitibey but as an exercise this illustrates
variable passing and subroutine nesting. Noticettigavariable “current_switch” was never used
in the script.

subroutine: store_switch //

{

current_switch = $1 // string 1 passed here mevalf the “switch” variable in the calling subraei
last_led = $1 /l the “last led” varialis set to = the “switch” variable.

}

27

7.8 - Example Script — Actions

For this example each button is given its devassaction.ReleaseandOver-pressactions were
not required. By putting the “guts” of the scrihavior in Subroutines, the Actions are kept
simple and straight forward. Each button pressugligsets the value of “switch” and “source”
and then passes those variables to the “handle ress”gsubroutine.

// Button press section
1
action: BTN_1_PRESS

switch=1
source = sourcel
call handle_sw_press(switch, source)

}

action: BTN_2_PRESS
{

switch = 2
source = source2
call handle_sw_press(switch, source)

}

action: BTN_3_PRESS

switch =3
source = source3
call handle_sw_press(switch, source)

}
action: BTN_4_PRESS

switch = 4
source = source4
call handle_sw_press(switch, source)

}
action: BTN_5_PRESS

switch =5
source = sourceb
call handle_sw_press(switch, source)

}

action: BTN_6_PRESS

switch = 6
source = source6
call handle_sw_press(switch, source)

}
action: BTN_7_PRESS

switch=7
source = source?7
call handle_sw_press(switch, source)

}
action: BTN_8 PRESS

switch = 8
source = source8
call handle_sw_press(switch, source)

}

28

action: BTN_9_PRESS

switch =9
source = source9
call handle_sw_press(switch, source)

}
action: BTN_10_PRESS

{

switch = 10

source = sourcel0

call handle_sw_press(switch, source)

}
action: BTN_11_PRESS

{

switch = 11

source = sourcell

call handle_sw_press(switch, source)

}

action: BTN_12_PRESS

switch = 12
source = sourcel2
call handle_sw_press(switch, source)

}
action: BTN_13_PRESS

switch = 13
source = sourcel3
call handle_sw_press(switch, source)

}
action: BTN_14 PRESS

{

switch = 14

source = sourcel4

call handle_sw_press(switch, source)

}

action: BTN_15_PRESS

switch = 15
source = sourcel5
call handle_sw_press(switch, source)

}
action: BTN_16_PRESS

{

switch = 16

source = sourcel6

call handle_sw_press(switch, source)

}

7.9 - Custom Scripting Suggestions

Before you embark on your scripting expedition tiestime to map out the requirements in a
spread sheet or note pad. Spending a bit of tinfeeiplanning phase can save you some
headaches later on and will at least make it e&sigtiay focused on coding once you start getting
deep into it. Also writing out the requirementse(iTurn the xx ON when yy AND zz are true

OR nn is NOT true) can be helpful for scripting gdex logic statements.

The GP Scripting language is a cross between ted®Basic programming languages. Correct
syntax is essential, and is a common source of tengrors so be sure to carefully check case
sensitive spelling, braces and parentheses pladeatenwhenever you get a compiler error.

7.10 - Scripting Router Control

By now you have been exposed to many of the ramatetrol functions available. You can review
in detail the complete set of Router Functionslatée by opening the Router Functions section
of the Help file. There you will find informatiomahe using the following:

Router Function Description

Connect Makes a cross-point connection in the route

Disconnect Breaks a cross-point connection in dlier.

Lock Locks a cross-point connection in the router.

Unlock Unlocks a cross-point connection in the eout

Connection Queries a destination to find out wibaree is connected to it.

Locked Queries a destination to find out if itasked.

Fire_salvo Fires a pre-defined Salvo - requiresSleo ID number.

Find_src Returns the source signal ID number wloenkypow the source name and
location.

Find_dst Returns the destination signal ID when kmaw the dest name and location.

Find_salvo Returns a Salvo ID number when you kttenSalvo name.

Lio get Returns the current value — 1 or 0 — adgid signal in the router.

Lio_set Sets the value — 1 or 0 — of a logic sigmahe router.

7.11 -Scripting Surface Control
Control Surfaces may be directly controlled usiriguat in surface script functions. You can find
detailed information on these functions in the Hégis “Surface Functions” section.

Surface Functions can be divided into two groupe first set of basic functions control the
rudimentary tasks of taking a surface preset,ggetifader's ON status, and turning a fader
channel ON. The second “advanced” set allows yautiliae the Automation Controller protocol
built into each surface.

7.12 - Basic Surface functions

These functions may be used directly in your s@ipt require a minimum amount of scripting
knowledge.

surf_take_preset — takes an “Event’ stored on faseir The surface ID parameter is an index into
the surface list entered in the Device Propertesf

surf_get_input_on — returns the channel ON stdta)N, 0 = OFF.
surf_set_input_on — turns a channel ON or OFF.

29

7.13 - Advanced Surface Functions

These functions require just a bit more programnkimgwledge to implement correctly. The
function “surf_talk” is very powerful because ital's you to use all of the surface’s Automation
Control Interface (ACI) command set. The automagiootocol is ASCII based which makes it
easy to incorporate ACI commands using the buiirface functions. Virtually every switch,
fader level, knob settings, etc. is accessible. ABEcommands are available on an “as needed”
basis for Wheatstone customers. Please contacstar@er Support representative for details on
acquiring this information.

surf_talk — use this to send ACI commands to aasexf
surf_reply — use this to retrieve the last repbereed from a surface.
surf_string- use this to parse a reply string.

7.14 - Example surf_talk Commands
If you are reading this then your curiosity mustiigued so here are a couple of examples of the
syntax required for use with surf_talk.

surf_talk (1, “INPUT:7|FADER:192") // sets fadetd0dB on surface 1.

surf_talk (2, “INPUT:4|ON:0") // turns channel 4 BBn surface 2.

surf_talk (3, (“INPUT:5|CUE:1") //puts fader 5 inJE on surface 3.

The Surf ID used in the examples above comes fhentist of Surfaces defined in Device
Properties.All of these AClI commands generate esgliom the surface that may be stored,
parsed, and acted upon in your script. Fader vdhleisito the range of 0-256. Note that nominal
dB level conversions to integers suitable for ugh teurf_talk” vary by surface type and may be

calculated using special set of equations, whiehaaailable on request along with the ACI
commands.

30

8 GP16P Scripting Language Overview

The following Script Language overview may be foumthe GP-16PConfiguration Tool's Help
file. The Overview and Structure sections are idebtlifor reference and will give you an idea
how a script is built.

Please refer to the Help File for specific detailswriting Statements, Boolean Expressions, etc.

The scripting language used to define virtual nreemstructions for the programmable button
panel is a very simple language to learn. If yaufamiliar with C or Basic or any number of any
other languages you should feel at ease writingtsdior the GP16P in no time.

8.1 - Case Sensitivity
Everything in a script file is case sensitive. Tdentifiers "xYz" and "xyz" are not equivalent.

8.2 - Comments

A comment starts with two forward slash charact®rsce a comment starts all characters are
ignored until the end of the current line. A cominesn also start with /* and end with */. The
following example shows some comments.

/1 This is a conment
/1 More coments can nake your script easier to read

X =x +1 /1 Coments can end a |line of script code

/*

This is a

mul tiline comment
*/

8.3 - Actions

Actions are the basic execution unit of a scriptypical script will contain several action
definitions. Events that occur within the GP16R wijger an action.

Action names can be any unique non-reserved idemt&n identifier can be up to 32 characters
long. The first character must be a letter; thiofeing characters may be letters, numbers or the
underscore character ("_").

8.4 - Global Variables

Scripts may have an unlimited number of globalalaigs. Global variables have visibility
throughout the script file. Every action and sulirehas visibility to a global variable. Global
variables retain their values between executiogach action.

31

Variable names can be any unique non-reservedifidéenfn identifier can be up to 32
characters long. The first character must be arldtte following characters may be letters,
numbers or the underscore character (*_").

All variables in the scripts are treated as charagtrings. You can define a variable (ie x), assig
a text string to x, perform some string operations(, then assign a number to x, and perform
mathematical operations on x.

8.5 - Local & Static Local Variables

Script actions and subroutines may have an unlimitenber of local variables. Local variables
have visibility throughout the action or subroutibat do not have visibility from within other
actions or subroutines. Static local variablesimdfzeir values between execution of each action
or subroutine.

8.6 - Constants

Scripts may have an unlimited number of constabsistants have visibility throughout the
script file. Constants have all the same propedteglobal variables, except that you can not
assign a value to a constant at runtime.

Constant names can be any unique non-reservedfielern identifier can be up to 32
characters long. The first character must be arldtte following characters may be letters,
numbers or the underscore character (*_").

8.7 - Arrays
Scripts may have an unlimited number of globaly@r&lobal arrays have visibility throughout
the script file. Each element of an array hashallsame properties as global variables.

When an array is declared an array dimension gsd#slared. When indexing elements of an
array, the first element has an index value of .Zénis is the same as arrays in the C language.

Out of bounds write access to an array will be rgdoOut of bounds read access to an array will
return an empty string.

Array names can be any unique non-reserved identfin identifier can be up to 32 characters
long. The first character must be a letter; thiofeing characters may be letters, numbers or the
underscore character ("_").

32

9 GP16P Scripting Language Structure

9.1 - Script Structure

The structure of a script file is shown below. Glbbkariable declarations must be done at the
start of the file before any actions are defindakfé can be any number of actions defined in the
script file. Comments may appear at any point endtript file.

const ant decl arati ons

vari abl e decl arati ons

array decl arati ons

action bodies

subrouti ne bodies

9.2 - Constant Declarations
A constant declaration begins with the keyword 'stant:" followed by the constant name and a
value assignment. The following example shows thetire of constant declarations.

numrber
"string"

constant: nanme
constant: nane

The following example shows the declaration of t@astants. The first global constant "c1" is
initialized with the numeric value of 1000. The @ed constant "c2" is initialized with the string
"Have a nice day.".

constant: c1l 1000
constant: c2 "Have a nice day."

9.3 - Global Variable Declarations

A global variable declaration begins with the keysvtvariable:" and the variable name. After
the variable name an optional assignment may befsmk The following example shows the
structure of global variable declarations.

vari abl e: nane

vari abl e: nane
vari abl e: nane

nunber
"string"

The following example shows the declaration of ¢hgiobal variables. The first global variable
"v1" is not initialized. The virtual machine wilhitialize this variable to an empty string. The
second global variable "v2" is initialized with thameric value of 10 . The third global variable
"v3" is initialized with the string "Hello World".

variable: vl

vari able: v2
vari able: v3

10
"Hell o World"

33

9.4 - Global Array Declarations

A global array declaration begins with the keywtadray:" and the array name. After the array
name an array dimension must be specified. Arragig Ime one or two dimensional. The
following example shows the structure of globahgirdeclarations

array: name [size]

array: nane [size][size]

The following example shows the declaration of glabal arrays. The first global array "al" has
ten elements and the second global array "a2" Gaglements.

array: al[10]

array: a2[100]

The following example shows the declaration of a thmensional global array

array: al[10][4]

Note: The virtual machine treats all arrays asdimensional. The compiler will flatten all two
dimensional array accesses into a single dimerisiear array.

9.5 - Local & Static Local Variable Declarations

A local variable declaration begins with the keyd/twariable:" and the variable name. After the
variable name an optional assignment may be spdcifihe following example shows the
structure of local variable declarations.

vari abl e: nane

vari abl e: nane
vari abl e: nane

numrber
"string"

The following example shows the structure of stitoal variable declarations.

static variabl e: name
static variabl e: name
static variable: nane

numrber
"string"

The example in the Action Bodies section showaueof a temporary and a static local
variable.

9.6 - Action Bodies

An action declaration begins with the keyword "awti followed by the action name, then an
opening curly brace. Any number of statements reaide within the action body. The end of an
action is indicated by a closing curly brace. Tolofving example shows the structure of an

action body.
action: nane
{

| ocal variable decl arations
st at ement s

34

The following example shows a typical action botlgis action is named "BTN_1 PRESS". It
has two local variables. The variable "count" &atic variable that will be incremented each
time the action is executed. After the count isentented a message string is built up with the
count included and the message is printed to theate (a Telnet window).

/1 This action will print the nessages:

// SVYM This action has been executed 1 tines.
// SVM This action has been executed 2 tines.
// SVYM This action has been executed 3 tines.
// SVM This action has been executed 4 tines.

/1 etc ...
e e e
action: BTN 1 PRESS

{

static variable: count = 0
vari abl e: nessage

count = count + 1
message = "This action has been executed " # count # " tines."
print (message)

9.7 - Action Parameters

When an action is executed a set of four parameftidirbe passed to the action. All four
parameters are not always used. If a particulzZomtgpe does not use all four parameters, the
unused parameters will contain empty strings.

The meaning of the parameters is specified by dhecg of the action, see the sectimtion
types. Action parameters are accessed by the builtdiiabke names "$1", "$2", "$3" and "$4".

9.8 - Subroutine Bodies

A subroutine declaration begins with the keywornabteutine:" followed by the subroutine name,
then an open curly brace. Within the subroutineylsr@ any number of statements. The end of a
subroutine is indicated by a closing curly bradee Tollowing example shows the structure of a
subroutine body.

subrouti ne: nane

{
| ocal variabl e decl arations
st atenent s
optional return

}

9.9 - Subroutine Parameters

When a subroutine is executed a set of four paemneitill be passed to the subroutine. All four
parameters are not always used. If a particulaomtgpe does not use all four parameters, the
unused parameters will contain empty strings.

Subroutine input parameters are accessed by thdrbuariable names "$1", "$2", "$3" and
"$4". The following example shows the use of par@rgewithin subroutines.

35

A Subroutine may return one parameter to the callee caller will access the returned
parameter through the built-in variable name "#i0iis parameter will remain valid until the next
subroutine call is made.

subroutine: sumup_1

{
var sum
sum = $1 # $2 # $3
return sum
}
subroutine: sumup_ 2
{
return ($1 + $2 + $3 + $4)
}
subroutine: print_sum
{
print_sum ("Sum= " # $1)
}
L R e R
/1 This action will result in the follow nfg nessage on the consol e:

/1 SVM Hello Wrld
[/ SVM Sum = 100

I i
action: test_action
{
call sumup_1 ("Hello", " ", "World")
print ($0)
call sumup_2 (10, 20, 30, 40)
call print_sum ($0)
}

36

1 0 Script Debugging

If you have delved into writing your own scriptswwill inevitably have to debug them -
if only to root out spelling or other minor syntexors. Programming and debugging go
hand in hand. Fortunately there are a couple of useful tools to aid you in your time
of need.

10.1 - Finding Compiler Errors

The “jump to error” feature in the Script Editofaals you to click on a reported

compiler error in the Main GP16P window to jumghe line in the Script near or where
the error is present. This feature is handy farkiray down bugs in scripts that will not
compile. A word of caution, there are literally > ways to write bad code, so this
feature will usually get you close to the line wath error and not on the exact error. Also
the Script Editor lacks a line number feature smit be difficult to count lines out,
especially in large scripts.

7 GP-16P Configuration Tool - MyGP-8 (On Line - Connected) - [interlock16.ss] E]@

File Wiew Build Device Help

BEEdE O S22 Fd & n ?

ERROE (11ne:19) syntax error, unexpected goCOMSTANT, exWheatstone Frogrammable Panel Compiler "wsgppc’ wversion 0.2.0
Copyright 2005, Wheatstone Cor‘p A11 rights reserved.

Compiling: C: \Program F1'Ies\'-\'heatstone\GPlGP\scr"lp‘ts\Pr‘1merScr‘1p‘ts\1 nterlocklé.ss

ERROR ('I'lne 19) syntax error, unex<pected goCOMSTANT, expecting ':

SOrry. .

Clicking right on the compiler ERROR line shown abavill cause the Script Editor to
highlight the approximate error location — showiohe

action: STARTUP
i

4 I

A/ hE_END

P P P P A

/’,/ Custom Inter"lock switch code

wEEE wEEE wEEE
wvariahle ,f',f"lntentmna'l error - no colon after the word wariable -no wariable name

constant: ; =) << The highlighted line is ok —error is just abate
variakle: switch = 0

variable: source = 0

wariahle: rurrent switrh = 0

10.2 - Third Party Editors

If you plan on doing a lot of scripting you migldresider using a third party
programming editor. Notepad++ is a nice freewaroed/Nhen you open a GP script in
Notepad++, you can choose a “Language” skin, IlKash actionscript”, that will give
you line numbers and a context sensitive text cedtierme. You will still have to open
the file in the GP16P tool before you compile -sbee to Save in the editor first.

Do an internet search for “Notepad++”" to downlolid editor.

37

10.3 -Using “Print” and Telnet to Debug

The Print statement may be inserted anywhere lg@¢ript code to print messages, variable
values, etc. to a Telnet window. This feature isesrely useful for tracking down bugs or
displaying script behavior in compiled code runnomgthe GP-xx panel.

Here’s how it works.

Add a Print statement anywhere in a subroutineetorm Add it to a button press action to print
every time the button is pressed or released.

Example Print Statements:
Print (your_variable_name)
Print (“Put text in quotes”)
Print (“Put text in quotes and " #variable# “ uke # sign to concatenate variables and text”)

To Telnet to the GP panel you need to know thrazmh
* IP address of the GP-xx panel
» User Name: knockknock
» Password: whosthere

Use any Telnet client or open a Command Prompt @/inand type:
telnet 192.168.1.221 (or whatever the IP addregeuf GP-xx panel is).

Toggle the ECHO OFF and enter the username anavpessyou should see a screen similar to
this one:

& Telnet 192.168.8.221 [y ﬂﬂ

Ctr1-D — Exit
Ctrl-E — Toggle Echo

Please log in...
Uszername: knockknock

Pazzword: whosthere
e lcome knockknock

Software Uersion: 1.8.3 Built:Oct 18 28086 at 18:33:04
Panel Type: GP-16P
FPGA Uersion: BAA2

width v write uptime

telnet exit
ip props sstart
szhow dstlist slvlist

Type “"help <command>" for help on a specific command.
Type "?*" to repeat the last command.

38

Once you are logged on you need to toggle ScripuBging ON.
To toggle Script Debug ON type:

sdbg 1 <Enter>
To turn it OFF type:

sdbg 0 <Enter>

@ Telnet 192.168.8.221 ﬂﬂ

"help <command>" for help on a specific command.
"1t to repeat the last command.

SCRIPT DEBUG is OM

—» ZUM: Subroutine—handle_sw_press

SUM: connecting Source ID 11 to Dest 1.
SUM: Subroutine—handle_sw_press

SUM: connecting Source ID 112 to Dest 1.

Now when you press a button on the GP-xx panelingnimne Example interlock16.ss script, you
will see the Print statements as they are executed.

39

Appendix A

Al - Example Custom Script File — interlock16.ss
To open this file in the GP16PConfiguration Tooltde following:

1-Start the GP-16P Configuration Tool software

2- Click File-New

3- Select interlock16 as the filename and click EAV

4- The Script Wizard opens automatically — ckeKNCEL to close it.

5- SelecWView >Script Editor

6-Copy and paste everything between the //START HERd //END HERE lines directly into
the bottom window of the Script Editor.

7- Save amterlock16.ss

//****START H E R E*********************************** kkkkkkhkkkkkkkkkkk

//*** kkkkkkkkkkkkkkkhkkkkhkhkkkkkkhhkkhkkk

/I Custom Interlock switch code —file interlockl6-semail paulpicard@wheatstone.com with any
guestions.

constant: ON = 1

constant: OFF =0

variable: led_ num =1

variable: switch =0

variable: source =0

variable: current_switch =0

variable: last_led =0

/Iaa * *% * * *kk * *% * *% * *kkk * *% * *

/I Map the destination you want to switch sourcekere

/Iaa * *% * * *kk * *% * *% * *kkk * *% * *

constant: dest_ a =1 // select destination id#iner for this 16x1 line selector

/Iaa * *% * * *kk * *% * *% * *kkk * *% * *

/Imap source signal id's to buttons 1 through 16
//*** kkkkkkkkhkhkkkhkkkhhkkkhkkkhhkkkhkhix
constant: sourcel = 11 //change the 11 to anoitgrcS signal id# as required- repeat for the rest
constant: source2 = 12

constant: source3 = 13

constant: sourced4 = 14

constant: source5 = 15

constant: source6 = 16

constant: source7 = 17

constant: source8 = 18

constant: source9 = 109

constant: sourcel0 =110

constant: sourcell =111

constant: sourcel2 = 112

constant: sourcel3 = 113

constant: sourceld4 = 114

constant: sourcel5 = 115

constant: sourcel6 = 116 //change the 116 to ansthece signal id# as required

40

/Iaa * *% * *

/I Subroutines
//***********************

subroutine: handle_sw_press //This subroutine duegt of the work.
/It receives switch#dasource info from the button
/lpress actions.

{
print ("Subroutine-handle_sw_press")
switch = $1
source = $2

btn_led (last_led, OFF)

call store_switch (switch)

connect (dest_a, source) //dest_a is a fixstirdgion defined above as a constant
btn_led (switch, ON)

print ("connecting Source ID " # source # " tedD" # dest_a #".")

subroutine: store_switch

{

current_switch = $1
last_led = $1

//******************************

// Button press section

// * *% * *kkk * *

action: BTN_1_PRESS

{

switch =1

source = sourcel

call handle_sw_press(switch, source)

}

action: BTN_2 PRESS
{

switch = 2

source = source2
call handle_sw_press(switch, source)

}

action: BTN_3 PRESS
{

switch = 3

source = source3
call handle_sw_press(switch, source)

}

41

action: BTN_4_ PRESS

{

switch = 4

source = source4

call handle_sw_press(switch, source)

}

action: BTN_5 PRESS

{

switch=5

source = sourceb

call handle_sw_press(switch, source)

}

action: BTN_6_PRESS
{

switch =6
source = source6
call handle_sw_press(switch, source)

}

action: BTN_7_PRESS

{

switch =7

source = source?

call handle_sw_press(switch, source)

}

action: BTN_8 PRESS

{

switch = 8

source = source8

call handle_sw_press(switch, source)

}

action: BTN_9 PRESS
{

switch =9
source = source9
call handle_sw_press(switch, source)

}

action: BTN_10 PRESS

switch = 10
source = sourcel0
call handle_sw_press(switch, source)

}

action: BTN_11 PRESS

switch = 11
source = sourcell
call handle_sw_press(switch, source)

}

action: BTN_12 PRESS

{

switch = 12

source = sourcel?

call handle_sw_press(switch, source)

}

action: BTN_13 PRESS

switch = 13
source = sourcel3
call handle_sw_press(switch, source)

}

action: BTN_14 PRESS

switch = 14
source = sourcel4d
call handle_sw_press(switch, source)

}

action: BTN_15 PRESS
{

switch = 15

source = sourcel5
call handle_sw_press(switch, source)

}

action: BTN_16 PRESS
{

switch = 16

source = sourcel6
call handle_sw_press(switch, source)

}

//****E N D H E R E kkkkkkkkkkkkkkkkkkkkkhkkhkkkhkkkhkkkkkkkkhkk

43

kkkkkkhkkkkkkkkkkk

	TITLE PAGES
	Page 1
	Page 2

	TABLE OF CONTENTS
	Page 1
	Page 2
	Page 3

	HARDWARE
	General Information
	GP-3 Headphone Panel
	GP-3 Pinout
	GP-3 Schematic
	GP-3 Load Sheet

	GP-4S 4 Switch Mic Panel
	GP-4S Pinouts
	GP-4S Schematic
	GP-4S Load Sheet

	GP-4W 4 Switch Control Panel
	GP-4W Pinouts
	GP-4W Schematics
	GP-4W Load Sheet

	GP-8P 8 Switch Programmable Switch Panel
	GP-8P Pinouts
	GP-8P Schematics
	GP-8P Load Sheet
	GPC-1 Schematics
	Page 1
	Page 2
	Page 3

	GPC-1 Load Sheet

	GP-16P 16 Switch Programmable Switch Panel
	GP-16P Pinouts
	GP-16P Schematics
	GP-16P Load Sheet

	GPC-3 Chassis Full Size Template
	GPC-3 System Parts List
	GPC-3 Installation Kit Parts List

	GP-8P/GP-16P SOFTWARE
	Overview
	Installation
	Setup
	Initial Tests
	Programming the Panel—an Example
	Programming the Panel—an Example (continue)
	Programming the Panel—Diving Deeper
	Programming the Panel—Diving Deeper (continue)
	Startup Code
	Looking at Your Script
	LIO Settings
	Finishing the Script

	The Helpfile Example
	LIO Configuration Example
	Configure the Signal
	Configure the GP-16P LIOs
	Configure the GP-16P LIOs (continue)
	Create a Script Using the Script Wizard
	Create a Script Using the Script Wizard (continue)
	Create a Script Using the Script Wizard (continue)
	Changing the Panel's IP Address
	What's Next?

	APPENDIX—GP-16P CONFIGURATION TOOL PROGRAMMING GUIDE
	Title Page
	Table of Contents
	continued

	1 Introduction
	1.1 GP-xx Hardware Compatibility

	2 What You Need to Get Started
	2.1 GP-16P Configuration Tool Software
	2.2 Physical Network Connection
	2.3 IP Address Settings
	2.4 XPoint Software
	2.5 GP-16P Help File

	3 Using GP-16P Configuration Tool Software
	3.1 Programming Procedure Summary
	3.2 Adding Devices
	3.3 Toggle On-Line Mode
	3.4 Create a New Script File
	3.5 Script Wizard Button Functions
	3.6 Compile the Script
	3.7 Starting the Script
	3.8 Testing
	3.9 Reviewing the Script Wizard Code

	4 Configuring Device Properties
	4.1 Surface Configuration
	4.2 Starting the Device Properties Dialog
	4.3 LIO Configuration
	4.4 Starting the Device Properties Dialog
	4.5 Design Philosophy

	5 LIO Example Using Device Properties
	5.1 Configure the Source Signal in XPoint
	5.2 Configure the GP-16P LIOs
	5.3 Create the Mic Control Script Using Script Wizard
	5.4 Reviewing the Script Wizard Code
	5.5 Beyond the Script Wizard

	6 What is the Script Editor?
	6.1 Script Editor Features
	6.2 Third Party Editors

	7 Creating Custom Scripts
	7.1 Getting the Example File
	7.2 Example Script Design
	7.3 Auto-generated Script Components
	7.4 Custom Start up Subroutine
	7.5 Example Script Structure
	7.6 Example Script - Variables and Constants
	7.7 Example Script - Subroutines
	7.8 Example Script - Actions
	7.9 Custom Scripting Suggestions
	7.10 Scripting Router Control
	7.11 Scripting Surface Control
	7.12 Basic Surface Functions
	7.13 Advanced Surface Functions
	7.14 Example surf_talk Commands

	8 GP-16P Scripting Language Overview
	8.1 Case Sensitivity
	8.2 Comments
	8.3 Actions
	8.4 Global Variables
	8.5 Local & Static Local Variables
	8.6 Constants
	8.7 Arrays

	9 GP-16P Scripting Language Structure
	9.1 Script Structure
	9.2 Constant Declarations
	9.3 Global Variable Declarations
	9.4 Global Array Declarations
	9.5 Local & Static Local Variable Declarations
	9.6 Action Bodies
	9.7 Action Parameters
	9.8 Subroutine Bodies
	9.9 Subroutine Parameters
	continued

	10 Script Debugging
	10.1 Finding Compiler Errors
	10.2 Third Party Editors
	10.3 Using "Print" and Telnet to Debug
	continued

	Appendix A
	A1-Example Custom Script File
	continued
	continued
	continued

