
Wheatstone Corporation
Jan 2006

TECHNICAL

MANUAL

G P C - 3 G P C - 3 G P C - 3 G P C - 3 G P C - 3 S Y S T E MS Y S T E MS Y S T E MS Y S T E MS Y S T E M
STUDIO TURRET

600 Industrial Drive

New Bern, North Carolina 28562

tel 252-638-7000 / fax 252-637-1285

GPC-3 Studio Turret Technical ManualGPC-3 Studio Turret Technical ManualGPC-3 Studio Turret Technical ManualGPC-3 Studio Turret Technical ManualGPC-3 Studio Turret Technical Manual

©2006 Wheatstone Corporation

GPC-3 / Jan 2006

page Contents – 1GPC-3 / Jan 2006

G P C - 3 C O N T E N T S

GPC-3 System

Table of Contents

Chapter 1 – GPC-3 Hardware

General Information ..1-2

GP-3 Headphone Panel ...1-3
Replacement Parts ... 1-3

GP-3 Pinouts .. 1-4

GP-3 Schematic .. 1-5

GP-3 Load Sheet .. 1-6

GP-4S 4 Switch Mic Control Panel ..1-7
Replacement Parts ... 1-7

GP-4S Pinouts .. 1-8

GP-4S Schematic ... 1-9

GP-4S Load Sheet ... 1-10

GP-4W 4 Switch Control Panel .. 1-11
Replacement Parts .. 1-11

GP-4W Pinouts .. 1-12

GP-4W Schematic ... 1-13

GP-4W Load Sheet .. 1-14

GP-8P 8 Switch Programmable Switch Panel 1-15
Replacement Parts .. 1-15

GP-8P Pinouts ... 1-16

GP-8P Schematic .. 1-17

GP-8P Load Sheet ... 1-18

GPC-1 Schematic .. 1-19

GPC-1 Load Sheet .. 1-22

GP-16P 16 Switch Programmable Switch Panel 1-23
Replacement Parts .. 1-23

GP-16P Pinouts ... 1-24

GP-16P Schematic .. 1-25

GP-16P Load Sheet ... 1-26

GPC-1 Schematic & Load Sheet see pages 1-19 - 1-22

GPC-3 Chassis Full Size Template .. 1-27

GPC-3 System Parts List .. 1-28

GPC-3 Installation Kit Parts List .. 1-28

page Contents – 2GPC-3 / Jan 2006

G P C - 3 C O N T E N T S

Chapter 2 – GP-8P/GP-16P Software

Overview ..2-2

Installation ...2-2

Setup ..2-2

Initial Tests ..2-3

Programming the Panel - an Example...2-4

Programming the Panel - Diving Deeper2-6
Startup Code ... 2-8

Looking at Your Script .. 2-8

LIO Settings .. 2-9

Finishing the Script ... 2-9

The Helpfile Example ...2-10
LIO Configuration Example ... 2-10

Configure the Signal .. 2-10

Configure the GP-16P LIOs ... 2-11

Create a Script Using the Script Wizard .. 2-13

About Changing the Panel’s IP Address ... 2-16

What’s Next? ... 2-17

Appendix

GP-16P Configuration Tool Programming Guide............... Appendix-1
Title Page

Table of Contents .. i

 continued .. ii

1 Introduction .. 3

 1.1 GP-xx Hardware Compatibility ... 3

2 What You Need to Get Started .. 4

 2.1 GP-16P Configuration Tool Software ... 4

 2.2 Physical Network Connection ... 4

 2.3 IP Address Settings .. 4

 2.4 XPoint Software .. 5

 2.5 GP-16P Help File .. 5

3 Using GP-16P Configuration Tool Software .. 6

 3.1 Programming Procedure Summary .. 6

 3.2 Adding Devices ... 6

 3.3 Toggle On-Line Mode ... 6

 3.4 Create a New Script File .. 7

 3.5 Script Wizard Button Functions .. 8

 3.6 Compile the Script .. 9

 3.7 Starting the Script ... 9

 3.8 Testing .. 9

 3.9 Reviewing the Script Wizard Code .. 10

4 Configuring Device Properties .. 11

 4.1 Surface Configuration .. 11

 4.2 Starting the Device Properties Dialog ... 11

 4.3 LIO Configuration .. 12

 4.4 Starting the Device Properties Dialog ... 12

 4.5 Design Philosophy ... 13

GPC-3 / Jan 2008

page Contents – 3GPC-3 / Jan 2006

G P C - 3 C O N T E N T S

5 LIO Example Using Device Properties ... 14

 5.1 Configure the Source Signal in XPoint .. 14

 5.2 Configure the GP-16P LIOs .. 15

 5.3 Create the Mic Control Script Using Script Wizard ... 17

 5.4 Reviewing the Script Wizard Code .. 18

 5.5 Beyond the Script Wizard .. 19

6 What is the Script Editor? ... 20

 6.1 Script Editor Features .. 20

 6.2 Third Party Editors ... 21

7 Creating Custom Scripts ... 22

 7.1 Getting the Example File ... 22

 7.2 Example Script Design .. 22

 7.3 Auto-generated Script Components .. 23

 7.4 Custom Start up Subroutine .. 23

 7.5 Example Script Structure ... 24

 7.6 Example Script - Variables and Constants ... 25

 7.7 Example Script - Subroutines .. 27

 7.8 Example Script - Actions ... 28

 7.9 Custom Scripting Suggestions .. 29

 7.10 Scripting Router Control .. 29

 7.11 Scripting Surface Control .. 29

 7.12 Basic Surface Functions .. 29

 7.13 Advanced Surface Functions .. 30

 7.14 Example surf_talk Commands .. 30

8 GP-16P Scripting Language Overview... 31

 8.1 Case Sensitivity ... 31

 8.2 Comments ... 31

 8.3 Actions ... 31

 8.4 Global Variables .. 31

 8.5 Local & Static Local Variables ... 32

 8.6 Constants ... 32

 8.7 Arrays .. 32

9 GP-16P Scripting Language Structure ... 33

 9.1 Script Structure .. 33

 9.2 Constant Declarations ... 33

 9.3 Global Variable Declarations ... 33

 9.4 Global Array Declarations ... 34

 9.5 Local & Static Local Variable Declarations ... 34

 9.6 Action Bodies ... 34

 9.7 Action Parameters ... 35

 9.8 Subroutine Bodies ... 35

 9.9 Subroutine Parameters.. 35

10 Script Debugging .. 37

 10.1 Finding Compiler Errors .. 37

 10.2 Third Party Editors ... 37

 10.3 Using “Print” and Telnet to Debug ... 38

Appendix A... 40

 Appendix A1 - Example Custom Script File .. 40

GPC-3 / Jan 2008

G P C - 3 H A R D W A R E

page 1 - 1GPC-3 / Jan 2006

GPC-3 Hardware

Chapter Contents

General Information ... 1-2

GP-3 Headphone Panel.. 1-3
Replacement Parts ... 1-3

GP-3 Pinouts .. 1-4

GP-3 Schematic.. 1-5

GP-3 Load Sheet .. 1-6

GP-4S 4 Switch Mic Control Panel ... 1-7
Replacement Parts ... 1-7

GP-4S Pinouts .. 1-8

GP-4S Schematic ... 1-9

GP-4S Load Sheet.. 1-10

GP-4W 4 Switch Control Panel ... 1-11
Replacement Parts ... 1-11

GP-4W Pinouts ... 1-12

GP-4W Schematic .. 1-13

GP-4W Load Sheet... 1-14

GP-8P 8 Switch Programmable Switch Panel 1-15
Replacement Parts ... 1-15

GP-8P Pinouts .. 1-16

GP-8P Schematic ... 1-17

GP-8P Load Sheet.. 1-18

GPC-1 Schematic ... 1-19

GPC-1 Load Sheet ... 1-22

GP-16P 16 Switch Programmable Switch Panel 1-23
Replacement Parts ... 1-23

GP-16P Pinouts .. 1-24

GP-16P Schematic ... 1-25

GP-16P Load Sheet..1-26

GPC-1 Schematic & Load Sheet see pages 1-19 - 1-22

GPC-3 Chassis Full Size Template ... 1-27

GPC-3 System Parts List ... 1-28

GPC-3 Installation Kit Parts List ... 1-28

page 1 - 2GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

GPC-3 Hardware

General Information
The GPC-3 system (W# 008710) is comprised of a desk turret (W# 008700)

having some combination of the available panels installed. The turret can hold
three single-wide panels, or one double-wide panel and one single-wide panel.
Several single-wide panels are offered: the GP-3 (W# 008705) headphone panel, the
GP‑4S (W# 008706) 4 switch mic control panel, the GP-4W (W# 008707) 4 switch
control panel, the GP-8P (W#008708) 8 switch programmable switch panel, and
the GP-BK (W#008720) blank panel.
The double-wide GP-16P (W# 008709)
16 switch programmable switch panel is
also available. The panels are described
in details on the following pages.

On the bottom part of the turret are
4 predrilled holes (3/16"D) that are used
for mounting the turret to the countertop.
Drill holes in the countertop by using
the supplied full size turret template
(W# 008712; see page 27). Then place
the turret on the counter and secure it
with the supplied #8 screws.

GPC-3 Chassis Template

4 Drill Center Marks
for #8 Screws 3/16" bit

GPC-3 / Jan 2013

page 1 - 3GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

Front View

Rear View

GP-3 Headphone Panel (W# 008705)

The GP-3 panel is comprised of a switch, a Low Z level pot, and a headphone jack.
All user wiring to the GP-3 panel takes place at the 12-position plug terminal and

the RJ-45 connector mounted on the GP-3PCB.

FACEPLATE

SWITCH

CLEAR FLAT TOP CAP WITH WHITE BASE
& WHITE INSERT

008753

510109

530109

W#PART NAME

POT DUAL LINEAR LOW Z 500121

21MM GRAY COLLET KNOB 520023

21MM BLACK CAP WITH WHITE LINE 530319

RTS JACK 260005

REPLACEMENT PARTS

12-POSITION PLUG ON BARRIER STRIP 260045

RJ-45 CONNECTOR 260048

6 PIN PLUG 230031

GP-3 SWITCH BARRIER LEFT 008714

12-POSITION BOXED HEADER 260046

SWITCH LED RED 600027

GP-3 SWITCH BARRIER RIGHT 008719

6 PIN HEADER 250065

GPC-3 / Jan 2013

G P C - 3 H A R D W A R E

page 1 - 4GPC-3 / Jan 2006

Note: Level pot is Low Z (100Ω).

1

2

3

4

5

6

7

8

HEADPHONE LT
HEADPHONE RT
SWITCH N.O.

SWITCH COM

RJ-45 Connector

HEADPHONE SH
SWITCH LED -

N/C
SWITCH LED +

1
2

3
4

5
6

7
8

9
10

11
12

HEADPHONE LT

HEADPHONE SH

HEADPHONE RT

N/C

N/C

N/C

SWITCH N.O.

N/C

SWITCH COM

SWITCH LED +

N/C

SWITCH LED -

Plug Terminal

600 Industrial Drive
New Bern, NC 28562

4 3

21

SW1

CT4

8

7

6

5

4

3

2

1

CT2

1

10

11

12

2

3

4

5

6

7

8

9

GPC-3/ Sep 2006

- Wheatstone Corporation -

WWP

GP-3 Headphone Panel Schematic

A
W# 700841

GP-3
6-27-05

GP-3A PCB

00S0041

page 1 - 5

A

B

A

B

2

2

1

1

BISSUED

CHECKED

DRAWN

CONTRACT NO.

DWG. NO.FSCM NO.

SHEETSCALE

REVSIZE

DATEAPPROVALS

1 OF 1

SA

SA

CT1
100

4
56

CT1
100

1
23

24R2

24R1

CT31

2
3

S
T

R

HDPN_RT

SW_C

LED_C

HDPN_LT

HDPN_SH

SW_NO

LED_A

HDPN_SH

HDPN_RT

HDPN_LT

HDPN_LT

HDPN_RT

HDPN_SH

LED_C

SW_C

LED_A

SW_NO

SW_C

LED_A

SW_NO

LED_C

"ON" SW

RJ-45 CONNECTOR
PHOENIX CONNECTOR

G P C - 3 H A R D W A R E

page 1 - 6GPC-3 / Jan 2006

GP-3 Headphone Panel Load Sheet

Top

Bottom

GPC-3 / Sep 2006

page 1 - 7GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

Front View

Rear View

GP-4S 4 Switch Mic Control Panel (W# 008706)

The GP-4S panel has “ON,” “OFF,” “COUGH,” and “TB” (talkback) switches for
use as a microphone input remote control.

All user wiring to the GP-4S panel takes place at the 12-position plug terminal or the
RJ-45 connector mounted on the GP-4PCB.

FACEPLATE

SWITCH
RED TRANSP CAP FOR SWITCH

008755

510109
530097

W#PART NAME

REPLACEMENT PARTS

12-POSITION PLUG ON BARRIER STRIP 260045

RJ-45 CONNECTOR 260048

SWITCH LED RED 600027

ORANGE TRANSP CAP FOR SWITCH 530098

CLEAR FLAT TOP CAP WITH WHITE BASE
& WHITE INSERT

530109

SWITCH LED YELLOW 600031

GP-4 SWITCH BARRIER 008715

12-POSITION BOXED HEADER 260046

GPC-3 / Jan 2013

G P C - 3 H A R D W A R E

page 1 - 8GPC-3 / Jan 2006

Wire these connections to the console mic input channel or Wheatstone
Bridge logic card port.

*This connector pinout matches the W# 008653 LRJ-2001 rear panel connections for Wheat-
stone Bridge logic cards. Simply plug a standard CAT5 cable between the GP-4S RJ-45 connec-
tor and the logic card rear panel.

1

2

3

4

5

6

7

8

GROUND
COUGH
TB TO CR

REMOTE OFF

*RJ-45 Connector

TALLY OFF
TALLY ON

REMOTE ON
+5V DIGITAL

1
2

3
4

5
6

7
8

9
10

11
12

COUGH

TB TO CR

TALLY OFF

TALLY ON

REMOTE OFF

REMOTE ON

GROUND

GROUND

+5V DIGITAL

+5V DIGITAL

N/C

N/C

Plug Terminal

New Bern, NC 28562
600 Industrial Drive

SW1
1 2

34

SW2
1 2

34

CT2

1

2

3

4

5

6

7

8

CT1

9

8

7

6

5

4

3

2

12

11

10

1

page 1 - 9

80S0040
GP-4A PCB

10-13-05

GP-4S

W# 700840

GPC-3 / Sep 2006
4 Switches Mic Control Panel Schematic

- Wheatstone Corporation -

WWP

A

SA

SA

1 OF 1

APPROVALS DATE

SIZE REV

SCALE SHEET

FSCM NO. DWG. NO.

CONTRACT NO.

DRAWN

CHECKED

ISSUED B

1

1

2

2

B

A

B

A R2 220

R1 220

21

SW3

SW4
1 2

MC+5V

GND

GND

MC+5V

GND

GND

MC+5V

MC+5V

GND

MC+5V

GND

GND

THIS CONNECTOR PINOUT
MATCHES THE W# 008653 LRJ-2001
REAR PANEL CONNECTIONS
FOR WHEATSTONE BRIDGE
LOGIC CARDS.
SIMPLY PLUG A STANDARD
CAT5 CABLE BETWEEN
THE GP-4S RJ-45 CONNECTOR
AND THE LOGIC CARD REAR
PANEL.

PHOENIX CONNECTOR
RJ-45 CONNECTOR

"OFF" SW

"ON" SW

"TB" SW

"COUGH" SW

G P C - 3 H A R D W A R E

page 1 - 10GPC-3 / Jan 2006

Top

Bottom

GP-4S 4 Switch Mic Control Panel Load Sheet
GPC-3 / Sep 2006

page 1 - 11GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

Front View

Rear View

GP-4W 4 Switch Control Panel (W# 008707)

The GP-4W panel has four general purpose illuminated switches.
All user wiring to the GP-4W panel takes place at the 12-position plug terminal or

the RJ-45 connector mounted on the GP-4PCB.

FACEPLATE

SWITCH

008755

510109

W#PART NAME

REPLACEMENT PARTS

12-POSITION PLUG ON BARRIER STRIP 260045

RJ-45 CONNECTOR 260048
SWITCH LED RED 600027

CLEAR FLAT TOP CAP WITH WHITE BASE
& WHITE INSERT

530109

GP-4 SWITCH BARRIER 008715

12-POSITION BOXED HEADER 260046

GPC-3 / Jan 2013

G P C - 3 H A R D W A R E

page 1 - 12GPC-3 / Jan 2006

1
2

3
4

5
6

7
8

9
10

11
12

SWITCH 3

SWITCH 4

TALLY 2

TALLY 1

SWITCH 2

SWITCH 1

GROUND

GROUND

+5V DIGITAL

+5V DIGITAL

TALLY 3

TALLY 4

Plug Terminal

1

2

3

4

5

6

7

8

GROUND
SWITCH 3
SWITCH 4

SWITCH 2

RJ-45 Connector

TALLY 2
TALLY 1

SWITCH 1
+5V DIGITAL

No connections available for Tally3
and Tally4 on this connector.

New Bern, NC 28562
600 Industrial Drive

4 3

21

SW1

4 3

21

SW2

4 3

21

SW3

4 3

21

SW4

CT2

1

2

3

4

5

6

7

8

CT1

9

8

7

6

5

4

3

2

12

11

10

1

A

WWP

- Wheatstone Corporation -

4 Switch Control Panel Schematic
GPC-3 / Sep 2006

W# 700840

GP-4W
10-13-05

GP-4A PCB

80S0040

page 1 -13

SA

SA

1 OF 1

APPROVALS DATE

SIZE REV

SCALE SHEET

FSCM NO. DWG. NO.

CONTRACT NO.

DRAWN

CHECKED

ISSUED B

1

1

2

2

B

A

B

A 220R4

220R3

220R2

220R1

MC+5V

GND

GND

MC+5V

GND

GND

GND

GND

MC+5V

MC+5V MC+5V

MC+5V

GND

MC+5V

RJ-45 CONNECTOR
PHOENIX CONNECTOR

NO CONNECTIONS
AVAILABLE FOR
TALLY3 AND TALLY4
ON THIS CONNECTOR.

G P C - 3 H A R D W A R E

page 1 - 14GPC-3 / Jan 2006

Top

Bottom

GP-4W 4 Switch Control Panel Load Sheet
GPC-3 / Sep 2006

page 1 - 15GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

GP-8P 8 Switch Programmable Switch Panel (W# 008708)

Front View

Rear View

The GP-8P panel has eight switches that can be programmed for a variety of functions by
using the Ethernet-enabled GUI software (described in Chapter 2).

The unit has an RJ-45 connector for Ethernet connections and a DC power jack mounted
on the GPC-1PCB.

GPC-3 / Jan 2013

FACEPLATE 008757

W#PART NAME

REPLACEMENT PARTS

COAXIAL POWER JACK 260054

SWITCH NKK W/BRIGHTED RED LED 510290
WHITE CAP FOR SWITCH 530004

RJ-45 CONNECTOR UPRIGHT 260048

GP-8 PCB "L" BRACKET 008745

POWER WALL ADAPTER 980035
PLUG KIT FOR POWER ADAPTER 980037

page 1 - 16GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

GP-8P Pinouts

Plug the supplied AC adapter into the AC
mains and into the DC IN power jack on
the GPC-1PCB to power-up the panel.

1
2
3

4
5
6
7
8

TXD +
TXD -
RXD +

RXD -

RJ-45 Ethernet Connector

GPC-3 / Jan 2013

SW2

43

2 1

SW4

43

2 1

SW3

43

2 1

SW6

43

2 1

SW5

43

2 1

SW8

43

2 1

SW7

43

2 1

0.1uF
C1

New Bern, NC 28562
600 Industrial Drive

CT1

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

+3.3V

GND

VCC

GNDGNDGNDGND

4148D2

P9V

GND GND GND GND

R4
1.00K

R13
1.00K

R1
1.00K

R11
1.00K

R12
1.00K

R10
1.00K

R3
1.00K

R2
1.00K

4148D1

4148D4

4148D3

4148D6

4148D5

4148D8

4148D7

SW1

43

2 1

R6 39

R7 39

R8 39

R9 39

GND

VCC

A80S0038
GP-8A PCB

12-5-05

GP-8

W# 700838

WWP

SA

SA

- Wheatstone Corporation -

page 1 - 178 Programmable Switch Panel SchematicGPC-3 / Sep 2006

A

B

D

C

D

C

A

B

4

4 1

1

2

23

3

C
DWG. NO.FSCM NO.

ISSUED

CHECKED

DRAWN

CONTRACT NO.

SHEETSCALE

REVSIZE

DATEAPPROVALS

1 OF 1

GND

R5
1.00K

SW_X_0

LED_X_0

SW_X_1

LED_X_1

LED_X_1

LED_X_0

DSPL_RS

SW_X_5

SW_X_3

SW_X_1

SW_X_4

DSPL_DIN

SW_X_2

SW_X_0

LED_Y_6

LED_Y_4

LED_Y_2

LED_Y_0

LED_Y_7

LED_Y_5

LED_Y_3

LED_Y_1

SW_Y_1

SW_Y_3

SW_Y_5

SW_Y_7

SW_Y_2

SW_Y_4

SW_Y_6

DSPL_CLK

SW_Y_0

SW_Y_1

SW_Y_2

SW_Y_3

SW_Y_4

SW_Y_1

SW_Y_2

SW_Y_3

SW_Y_4

LED_Y_0

LED_Y_1

LED_Y_2

LED_Y_3

1

2

4

3

5

6

7

8

G P C - 3 H A R D W A R E

page 1 - 18GPC-3 / Jan 2006

GP-8P 8 Programmable Switch Panel Load Sheet
GPC-3 / Sep 2006

600 Industrial Drive
New Bern, NC 28562

page 1 - 19

C
1 OF 3

GPC-1

W# 700843
80S0042

5-17-07

GPC-1C PCB

GPC-3 / Apr 2012

18 27 36 45

18 27 36 45

SA

SA

SA

- SA UR US - Sergey Averin -

DATE

SIZE REV

CONTRACT NO.

SCALE SHEET

DRAWN

CHECKED

ISSUED FSCM NO. DWG. NO.
D

APPROVALS

D

A

C

B

D

A

C

B

C79
0.1uF

GND

+2.5V

GND

C12
0.1uF

+3.3V

GND

C2
0.1uF

+3.3V

GND

C77
0.1uF

+3.3V

GND

C67
0.1uF

+3.3V

+3.3V

GND

C83
0.1uF

+3.3V

GND

C88
0.1uF

+2.5V

GND

C73
0.1uF

+2.5V

GND

C52
0.1uF

+2.5V

GND

C49
0.1uF

+3.3V

GND

C47
0.1uF

+3.3V

GND

C54
0.1uF

+2.5V

GND

C34
0.1uF

+2.5V

GND

C27
0.1uF

+2.5V

GND

C6
0.1uF

+3.3V

GND

C80
0.1uF

+3.3V

GND

C48
0.1uF

+3.3V

GND

C76
0.1uF

+3.3V

GND

C51
0.1uF

+3.3V

GND

C1
0.1uF

+3.3V

GND

C45
0.1uF

+3.3V

GND

C93
0.1uF

C72
0.1uF

GND

+3.3V

GND

R78 10.0K

GND

R75 4.99K
R74 1.30K
R33 4.99K

R37 10.0K

R67 4.99K
R77 4.99K

R31 10

R36 4.99K
R30 4.99K

R32 4.99K

+3.3V

+3.3V

R76 10.0K

C18
0.1uF

+3.3V

GND

C35
0.1uF

+3.3V

GND

C60
0.1uF

+3.3V

GND

U11

1

2

3

4
5

6
7

8
9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24
25

26

27
28

29
30
31
32

33

34

35

36

37

38

39

40

41

42
43

44
45
46
47

48
49

50
51
52

53

54

55

56

57
58
59
60
61

62
63
64

65

66

67

68

69

70

71

72

73

7475767778

79

80
81

82

83 8485

86

87
88 89

90

91
92

93
94

95

96
97

9899
10

0

CS8952

VS
S

VS
S

VS
S

VS
S_

M
II

VS
S_

M
II

R
SV

D
R

SV
D

R
SV

D

VS
S_

M
II

R
SV

D
R

SV
D

R
SV

D
R

SV
D

VD
D

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VD
D

VS
S

VS
S

VS
S

VD
D

_M
II

VS
S

VD
D

_M
II

VS
S

VD
D

_M
II

VS
S

TEST0
TEST1

TX+
TX-

RX+
RX-

TX_NRZ+
TX_NRZ-

SIGNAL+
SIGNAL-

RX_NRZ+
RX_NRZ-

SPD100

SPD10

LED1

LED2

LED3

LED4

LED5

RES

CLK25

XTAL_O
XTAL_I

MDC
MDIO

TXD0
TXD1
TXD2
TXD3
TX_ER/TXD4
TX_EN
TX_CLK

RXD0
RXD1/PHYAD1
RXD2
RXD3/PHYAD3
RX_ER/PHYAD4/RXD4
RX_DV/MII_DRV
RX_EN
RX_CLK

COL/PHYAD0
CRS/PHYAD2

MII_IRQ

REPEATER
10BT_SER_______
LPSTRT
LPBK
BPALIGN
BP4B5B
BPSCR
ISODEF
PWRDN

AN0
AN1
TCM
TXSLEW0
TXSLEW1

RESET

RX+
RX-

TX+
TX-

SW1
1
2
3
4

GND

C16
0.1uF

GND

+3.3V

C29
0.1uF

GND

+3.3V

VCC

D
S6

R43
619

VCC

GND

D
S5

R42
220

GND

+3.3V

D
S4

D
S1

R38
220

+3.3V

D
S1

0

R47
220

+3.3V

D
S9

R46
220

+3.3V

D
S8

R45
220

+3.3V

D
S7

R44
220

+3.3V

D
S3

R40
332

+3.3V

D
S2

R39
332

+3.3V

C61
0.1uF

C62
0.1uF

CT3

1

2

3

4

5

6

7

8

9

10

U6
1 2

3

4

5

6

7

89

10
11

12 13

14

LTC1386

R2IN
R1IN

V-

V+

R2OUT

T2IN
R1OUT

C1-

C1+

C2-

C2+

T1IN
T2OUT
T1OUT

C63
0.1uF

C64
0.1uF

GND GND

R16
1.00K

GND

R21
10.0K

+3.3V

Q3
FDN340P

R12
1.00K

GND

R19
10.0K

+3.3V

Q1
FDN340P

R41
332

+3.3V

TX-

TX+

RX-

RX+

C87 0.1uF
GND

C85 0.1uF
GND

R63 68 R70 47

R62 68 R71 47

R66 47

R69 47

R72 47

R73 47

R57 47

R58 47

C86 0.1uF
GND

C92 0.01uF
AGND

9

11 6

8

710

T1

1

3

2

14

16

15

T1
2

1

6

3

4

5

7

8

CT7

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

+3.3V

GND

VCC P9V

CT6

1

2

3

4

5

6

7

8

CT5

1

2

3

GND

CT4

1

2

3

4

CT2

1

2

3

4

5

6

CT1

1

2

3

4

5

6

C4
0.1uF

GND

VCC

GND

C41
0.1uF

VCC

GND

C58
0.1uF

C66
0.1uF

GND

VCCVCC

GND

C46
0.1uF

VCC

GND

C68
0.1uF

C69
0.1uF

VCC

GND

C65
0.1uF

VCC

GND

C59
0.1uF

VCC

GND

+3.3V

RXD+

TXD+

RXD-

TXD-

+1.2V

GND

C50
0.1uF

+1.2V

GND

C55
0.1uF

+1.2V

GND

C13
0.1uF

+1.2V

GND

C74
0.1uF

+1.2V

GND

C39
0.1uF

+1.2V

GND

C53
0.1uF

+1.2V

GND

C28
0.1uF

+1.2V

GND

C7
0.1uF

+1.2V

GND

C81
0.1uF

+1.2V

GND

C89
0.1uF

+1.2V

GND

C11
0.1uF

+1.2V

GND

C71
0.1uF

+3.3V

GND

C3
0.1uF

C90
0.1uF

GND

+3.3V

P9V
Y1

25.000MHZ

_
OUTE/D

ETH_TX+

ETH_RESET

TXSLEW1

ETH_RX_EN

ETH_TX_EN
ETH_TX_ERR
ETH_TXD[3]
ETH_TXD[2]
ETH_TXD[1]
ETH_TXD[0]

ETH_MDIO
ETH_TX-

ETH_RX+
ETH_RX-

RES

GND
GND

ETH_RX_EN

ETH_MDIO

ETH_RXD[3]
ETH_RXD[2]
ETH_RXD[1]
ETH_RXD[0]

ETH_RX_DV

ETH_RX_CLK

ETH_COL

LPBK

TCM

TXSLEW1
TXSLEW0
RES
ETH_TX_ERR
BPSCR

ETH_COL

ETH_MDC

ETH_RX_ERR

ETH_CRS

ETH_CLK_IN

DIPSW_[0]
DIPSW_[1]
DIPSW_[2]
DIPSW_[3]

FP
G

A_
D

O
N

E

TXD

RXD

LED_X_1

LED_X_0

DSPL_RS

SW_X_5

SW_X_3

SW_X_1

SW_X_4

DSPL_DIN

SW_X_2

SW_X_0

LED_Y_6

LED_Y_4

LED_Y_2

LED_Y_0

LED_Y_7

LED_Y_5

LED_Y_3

LED_Y_1

DSPL_CLK

SW_Y_0SW_Y_1

SW_Y_3

SW_Y_5

SW_Y_7

SW_Y_2

SW_Y_4

SW_Y_6
T1_O

R1_I

T1_O

R1_I

+3.3V

LED_X_0

+3.3V

LED_X_1

RJ_P3

RJ_P5

RJ_P7

RJ_P1

RJ_P4

RJ_P6

RJ_P8

RJ_P2

ETH_TX- RJ_P2

ETH_TX+ RJ_P1

RJ_P6

RJ_P3

RJ_P8

RJ_P7

RJ_P5

RJ_P4

ETH_RX-

ETH_RX+

DCin

VCC

GND

P9V

GND

+2.5V

GND

FPGA_TCK

FPGA_TDO

FPGA_TDI

FPGA_TMS

PROM_TMS

PROM_TDI

PROM_TDO

PROM_TCK

GND

+3.3V

LPBK

BPSCR

GND

TXSLEW0
TCM

CLK25_XTAL

ETH_TX_CLK

GND

MIIPWR = 3.3V

+(9-24)V
DC

OUT

ETHERNET RJ-45 CONNECTOR

RJ-45
CONN

FPGA

EPROM

600 Industrial Drive
New Bern, NC 28562

page 1 - 20

C
2 OF 3

GPC-1

W# 700843
80S0043

5-17-07

GPC-1C PCB

GPC-3 / Apr 2012

18 27 36 45

18 27 36 45

SA

SA

SA

- SA UR US - Sergey Averin -

DATE

SIZE REV

CONTRACT NO.

SCALE SHEET

DRAWN

CHECKED

ISSUED FSCM NO. DWG. NO.
D

APPROVALS

D

A

C

B

D

A

C

B

+2.5V

U1

1

3

4
5

6

7

8
10 13

17

1920

XCF04

CE

VCCJ

___OE/RST

TCK
TDI
TMS

CLK

CEO

VCCO

CF

D0

TDO

+3.3V +2.5V +2.5V

R1
1.00K

R3
1.00K

U9

2
3
4
5
7
9
10
11
12
13
15
16
18
19
20
21
22
24
26
27

28
29
31
33
34
35
36
37
39
40
42
43
44
45
46
48
50
51
52

54
55

56

57 58 61 62 63 64 65 67 68 71 72 74 76 77 78 79 80 81 83 85 86 87 90 92 93 94 95 96 97 10
0

10
1

10
2

103
104

106
107
108
109
111
113
114
115
116
117
119
120
122
123
124
125
126
128
130
131

132
133
135
137
138
139
140
141
143
144
146
147
148
149
150
152
154
155
156

158
159

160

16
1

16
2

16
5

16
6

16
7

16
8

16
9

17
1

17
2

17
5

17
6

17
8

18
0

18
1

18
2

18
3

18
4

18
5

18
7

18
9

19
0

19
1

19
4

19
6

19
7

19
8

19
9

20
0

20
3

20
4

20
5

206

207

208

XC3S200

I/O
,L

01
P_

5/
C

S_
B

I/O
,L

01
N

_5
/R

D
W

R
_B

I/O
,L

10
P_

5/
VR

N
_5

I/O
,L

10
N

_5
/V

R
P_

5
I/O I/O

,L
27

P_
5

I/O
,L

27
N

_5
/V

R
EF

5
I/O

,L
28

P_
5/

D
7

I/O
,L

28
N

_5
/D

6
I/O I/O

,L
31

P_
5/

D
5

I/O
,L

31
N

_5
/D

4
I/O

,L
32

P_
5/

G
C

LK
2

I/O
,L

32
N

_5
/G

C
LK

3
I/O

,V
R

EF
5

I/O
,L

32
P_

4/
G

C
LK

0
I/O

,L
32

N
_4

/G
C

LK
1

I/O
,L

31
P_

4/
D

O
U

T/
BU

SY
I/O

,L
31

N
_4

/IN
IT

_B
I/O

,V
R

EF
4

I/O
,L

30
P_

4/
D

3
I/O

,L
30

N
_4

/D
2

I/O
,L

27
P_

4/
D

1
I/O

,L
27

N
_4

/D
IN

/D
0

I/O I/O
,L

25
P_

4
I/O

,L
25

N
_4

I/O
,V

R
EF

4
I/O I/O

,L
01

P_
4/

VR
N

_4
I/O

,L
01

N
_4

/V
R

P_
4

I/O
,V

R
EF

4

I/O,L01P_3/VRN_3
I/O,L01N_3/VRP_3
I/O,L17P_3/VREF3

I/O,L17N_3
I/O,L19P_3
I/O,L19N_3
I/O,L20P_3
I/O,L20N_3
I/O,L21P_3
I/O,L21N_3
I/O,L22P_3
I/O,L22N_3

I/O,L23P_3/VREF3
I/O,L23N_3
I/O,L24P_3
I/O,L24N_3
I/O,L39P_3
I/O,L39N_3
I/O,L40P_3

I/O,L40N_3/VREF3

I/O,L40P_2/VREF2
I/O,L40N_2
I/O,L39P_2
I/O,L39N_2
I/O,L24P_2
I/O,L24N_2
I/O,L23P_2

I/O,L23N_2/VREF2
I/O,L22P_2
I/O,L22N_2
I/O,L21P_2
I/O,L21N_2
I/O,L20P_2
I/O,L20N_2
I/O,L19P_2
I/O,L19N_2
I/O,VREF2

I/O,L01P_2/VRN_2
I/O,L01N_2/VRP_2

PROGRAM_B

TCK

CCLK

TDO
TDI

TMS

DONE

I/O,L01N_6/VRP_6
I/O,L01P_6/VRN_6
I/O,VREF6
I/O,L19N_6
I/O,L19P_6
I/O,L20N_6
I/O,L20P_6
I/O,L21N_6
I/O,L21P_6
I/O,L22N_6
I/O,L22P_6
I/O,L23N_6
I/O,L23P_6
I/O,L24N_6/VREF6
I/O,L24P_6
I/O,L39N_6
I/O,L39P_6
I/O,L40N_6
I/O,L40P_6/VREF6

I/O,L40N_7/VREF7
I/O,L40P_7
I/O,L39N_7
I/O,L39P_7
I/O,L24N_7
I/O,L24P_7
I/O,L23N_7
I/O,L23P_7
I/O,L22N_7
I/O,L22P_7
I/O,L21N_7
I/O,L21P_7
I/O,L20N_7
I/O,L20P_7
I/O,L19N_7/VREF7
I/O,L19P_7
I/O,L16N_7
I/O,L16P_7/VREF7
I/O,L01N_7/VRP_7
I/O,L01P_7/VRN_7

HSWAP_EN

M0
M1
M2

I/O
,L

01
P_

1/
VR

N
_1

I/O
,L

01
N

_1
/V

R
P_

1
I/O

,L
10

P_
1

I/O
,L

10
N

_1
/V

R
EF

1

I/O
,L

27
P_

1
I/O

,L
27

N
_1

I/O
,L

28
P_

1
I/O

,L
28

N
_1

I/O
,L

31
P_

1
I/O

,L
31

N
_1

/V
R

EF
1

I/O
,L

32
P_

1/
G

C
LK

4
I/O

,L
32

N
_1

/G
C

LK
5

I/O
,L

32
P_

0/
G

C
LK

6
I/O

,L
32

N
_0

/G
C

LK
7

I/O
,L

31
P_

0/
VR

EF
0

I/O
,L

31
N

_0

I/O
,L

30
P_

0
I/O

,L
30

N
_0

I/O
,L

27
P_

0
I/O

,L
27

N
_0

I/O
,L

25
P_

0
I/O

,L
25

N
_0

I/O
,V

R
EF

_0
I/O

,L
01

P_
0/

VR
N

_0
I/O

,L
01

N
_0

/V
R

P_
0

I/O
,V

R
EF

_0 I/O I/O I/O I/O I/O

R56 4.99K

R64 1.00K

47R52

EABA[22]

R59
1.00K

GND

EABA[23]

R60
1.00K

GND

GND

GND
R6220

U5

1
2
6
7
8
12
13
16
17
18
19
20
21
24
27
28
31
32
33
36
37
38
41
42

56 57 61 62 63 64 68 69 70 71 74 75 76 77 78 79 82 83 86 90 91 92 93 94 95 99 10
0

10
1

10
2

10
3

108
109
110
111
112
113
117
118
119
120
121
122
123
127
128
129
130
131
132
135
136
137
138
139
140
143
144
145
146
147
150
151
152
153
154
155
156

15
9

16
0

16
1

16
4

16
5

16
6

16
7

16
8

17
2

17
3

17
4

17
5

17
6

17
8

17
9

18
0

18
1

18
4

18
5

18
6

18
7

19
1

19
2

19
3

19
7

19
8

20
0

20
2

20
4

20
5

TMS320C6713

_____HHWIL/AFSR1
HRDY/ACLKR1

H
D

15
/G

P[
15

]
H

D
14

/G
P[

14
]

H
D

13
/G

P[
13

]

H
D

10
/G

P[
10

]
H

D
11

/G
P[

11
]

H
D

12
/G

P[
12

]

H
D

9/
G

P[
9]

H
D

7/
G

P[
3]

H
D

6/
AH

C
LK

R
1

H
D

8/
G

P[
8]

H
D

5/
AH

C
LK

X1

C
LK

M
O

D
E0

C
LK

IN
PL

LH
V

R
SV

R
SV

TR
ST

TC
K

TM
S

TD
I

TD
O

EM
U

0
EM

U
1

C
LK

O
U

T3

R
SV

R
SV

R
SV

R
SV

R
ES

ET N
M

I

C
E1

C
E0

EA
20

EA
19

EA
17

EA
18

EA
15

EA
12

EA
16

EA
13

EA
14

EA
11

AW
E/

SD
W

E/
SS

W
E

C
LK

O
U

T2
/G

P[
2]

AR
E/

SD
C

AS
/S

SA
D

S

AO
E/

SD
R

AS
/S

SO
E

EC
LK

IN
EC

LK
O

U
T

EA
10

EA
9

EA
8

EA
7

EA
6

EA
5

EA
4

EA
3

EA
2

C
E2

C
E3

AR
D

Y

HINT/GP[1]

HCS/AXR1[2]

HD4/GP[0]
HD2/AFSX1

HD3/AMUTE1
HAS/ACLKX1
HD1/AXR1[7]

HDS1/AXR1[6]
HDS2/AXR1[5]

HD0/AXR1[4]
HCNTL0/AXR1[3]

HCNTL1/AXR1[1]
HR/W/AXR1[0]

HOLD
HOLDA

BUSREQ

ED0
ED1
ED2
ED3
ED5
ED4
ED8
ED7
ED6

ED10
ED9

ED12
ED11
ED14
ED15
ED13

BE0
EA21
BE1

GP[4](EXT_INT4)/AMUTEIN1
GP[6](EXT_INT6)
GP[5](EXT_INT5)/AMUTEIN0
GP[7](EXT_INT7)
CLKS1/SCL1
TINP1/AHCLKX0
TOUT1/AXR0[4]
CLKX0/ACLKX0
TINP0/AXR0[3]
TOUT0/AXR0[2]
CLKR0/ACLKR0
DX0/AXR0[1]
FSX0/AFSX0
FSR0/AFSR0
DR0/AXR0[0]
CLKS0/AHCLKR0
FSX1

CLKX1/AMUTE0
CLKR1/AXR0[6]

DX1/AXR0[5]

DR1/SDA1
FSR1/AXR0[7]
SCL0
SDA0

__
__

_

__
__

__

__

__
__

__
__

__
__

__
__

__
__

_
__

__
_

__
__

__
__

__
_

__
__

__
__

__
__

_
__

__
_

__
__

+3.3V

GND

+3.3V LC1
1

2

3

EMI_FILTER
GND

IN OUT
C40
0.1uF

GND

C44
22uF

GND

U4

1
2
3
4
5
6
7
8

9
10

11

12

1314

15

16
17

18
19
20
21
22
23
24
2526

28

29

30

31

32

33

34

35

36

38

39

40

41

42

43

44

45

47

48

M29W800

RB
____ BYTE

RP

G
__E
__W
__

DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0

DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14

A8
A7
A6
A5
A4
A3
A2
A1

A18
A17
A16
A15
A14
A13
A12
A11
A10
A9

A0

A19
A20
A21

DQ15A-1

VPP/WP

1.00KR13

R9 1.00K

4.99K R34

4.99K R35

1.00KR17

1.00KR24

1.00KR27

1.00K
R26

+3.3V

GND

R55
20.0K

R54
20.0K

R61 100

U12

19
1

2 18
3 17
4 16
5 15
6 14
7 13
8 12
9 11

74lcx245

B1
B2
B3
B4
B5
B6
B7

B0
A1
A2
A3
A4
A5
A6
A7
T/R___

A0

OE

__

R65
1.00K

GND

+3.3V

GND

R79
4.99K

+3.3V

U8
2
4
5
7
8

10
11
13

15

16
17
18

19

20
21

22

23
24
25
26
29
30
31
32
33
34

35

37
38

39

42
44
45
47
48
50
51
53

MT48LC4M16

RAS

DQML

BA1
BA0

A11
A10
A9

A8
A7

CAS

A6
A5
A4
A3
A2
A1
A0

____WE
___CS

CKE
CLK

DQMH

DQ15
DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
DQ8
DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0

220R50

220R48

220R49J2
J1

J3

CT8

1 2

3 4

5 6

7 8

9 10

11 12

13 14

+3.3V
J4

330pF C5

330pF C8

+2.5V

R68
1.00K

4.99KR10

R531.00K

R7220

PROM_TMS
PROM_TDI
PROM_TCK PROM_DATA

PROM_CCLK

FPGA_INIT
FPGA_DONE

FPGA_PGRM

PROM_TDO

+2.5V
FPGA_PGRM
FPGA_CCLK
FPGA_DONE

FPGA_TDO
FPGA_TDI

FPGA_TMS

FPGA_TCK

GND

FP
G

A_
IN

IT

FP
G

A_
C

D
AT

A

CPU_CCLK

CPU_CDATA

FPGA_CCLK
PROM_CCLK

FPGA_CDATA
PROM_DATA

GND

CPU_RPGM
FPGA_PGRM

X_PGRM

ED[11]

ED[6]
ED[10]

ED[2]

ED[7]

ED[5]

ED[8]

ED[1]

ED[4]

ED[0]

ED[12]

ED[3]

ED[15]
ED[14]

ED[9]

ED[13]

EA
[1

7]

EA
[1

6]

EA
[1

1]

EA
[1

3]

EA
BA

[2
3]

EA
BA

[2
2]

EA
[1

5]
EA

[1
2]

PROM_CCLK

FPGA_CCLK

ED[0]
ED[1]
ED[2]
ED[3]
ED[4]
ED[5]
ED[6]
ED[7]

C
PU

_T
C

K
C

PU
_T

M
S

C
PU

_T
D

I
C

PU
_T

D
O

ED[0]
ED[1]
ED[2]
ED[3]
ED[5]
ED[4]
ED[8]
ED[7]
ED[6]

ED[10]
ED[9]

ED[12]
ED[11]
ED[14]
ED[15]
ED[13]

EA
[2

]
EA

[3
]

EA
[4

]
EA

[5
]

EA
[6

]
EA

[7
]

EA
[8

]
EA

[9
]

EA
[1

0]

EA
[1

1]
EA

[1
4]

EA
[1

3]
EA

[1
6]

EA
[1

2]
EA

[1
5]

EA
[1

8]
EA

[1
7]

C
PU

_E
M

U
0

C
PU

_E
M

U
1

EA[2]
EA[3]
EA[4]
EA[5]
EA[6]
EA[7]
EA[8]
EA[9]
EA[10]
EA[11]
EA[12]

EA[15]

EMIF_CLK

ED[0]
ED[1]
ED[2]
ED[3]
ED[4]
ED[5]
ED[6]
ED[7]
ED[8]
ED[9]

ED[10]
ED[11]
ED[12]
ED[13]
ED[14]
ED[15]

C
PU

_C
LK

25

C
LK

O
U

T3

C
PU

_C
D

AT
A

EXT_INT6

EXT_INT7

EM
IF

_C
LK

EA[13]

EA[14]

CPU_PLLHV C
PU

_C
C

LK

HP_EN

C
PU

_R
PG

M

+3.3V

+3.3V

EA
[1

9]
EA

[2
0]

EA[21]

EA[3]
EA[4]
EA[5]
EA[6]
EA[7]
EA[8]
EA[9]

EA[10]
EA[11]
EA[12]
EA[13]
EA[14]
EA[15]
EA[16]
EA[17]
EA[18]

EABA[22]
EABA[23]

EA[19]
EA[20]
EA[21]

EA[2]

ED[8]
ED[9]
ED[10]
ED[11]
ED[12]
ED[13]
ED[14]
ED[15]

+3.3V

GND

+3.3V

GND

+3.3V

FPGA_INIT

FPGA_DONE

EXT_INT4

D
SP

L_
D

IN

LED_Y_7
SW_Y_0

SW_Y_2
SW_Y_1

SW_Y_3
SW_Y_4
SW_Y_5
SW_Y_6
SW_Y_7
SW_X_0
SW_X_1

SW_X_3

SW_X_2

SW_X_5

SW_X_4

D
SP

L_
R

S

D
SP

L_
C

LK

D
IP

SW
_[

0]
D

IP
SW

_[
1]

TX
D

R
XD

LED_Y_5

LED_Y_3

LE
D

_Y
_1

LE
D

_Y
_0

LED_Y_2

LED_Y_4

LED_Y_6

CPU_EMU0

CPU_TMS

CPU_TDI

CPU_TDO

CPU_TCK

CPU_EMU1

EM
IF

_C
LK

EA
[1

0]

EA
[2

]

EA
[6

]
EA

[7
]

EA
[3

]

EA
[5

]

EA
[8

]

EA
[4

]

EA
[9

]

EA
[1

4]

EA
[1

8]
D

IP
SW

_[
3]

D
IP

SW
_[

2]

C
LK

O
U

T3

R
EG

_S
YN

C

C
PU

_C
LK

25

C
LK

25
_X

TA
L

CE1_DISABLE

C
E1

_D
IS

AB
LE

EXT_INT6

EXT_INT7

EXT_INT4

ETH_RX_CLK

ETH_CLK_IN

ETH_MDIO
ETH_MDC

ETH_RXD[3]
ETH_RXD[2]
ETH_RXD[1]
ETH_RXD[0]
ETH_RX_DV

ETH_RX_ERR

ETH_RESET
ETH_RX_EN

ETH_CRS
ETH_COL

ETH_TX_CLK
ETH_TX_ERR

ETH_TX_EN
ETH_TXD[0]

ETH_TXD[2]
ETH_TXD[1]

ETH_TXD[3]

+3.3V

GNDGND

C9
330uF

GNDGND

VCC

10.0K
R29

VCC

88.7K
R22

GND

C19
0.1uF

GNDGND

L2

GND GND GND

10.0KR20

C31 0.01uF

40.2K
R14

GND

100K
R18

GND

+1.2V

U3

1

2

3

4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25

26

27

28

TPS54610

PGND

POWERPAD

RT

SYNC

SS/ENA

VBIAS

PWRGD

COMP

VSENSE

AGND

VIN

VIN
VIN

VIN
VIN

PH

PH
PH

PH
PH

PH
PH

PH
PH

BOOT
PGND
PGND

PGND
PGND

GND

C22
0.1uF

C36
0.1uF

TP1

600 Industrial Drive
New Bern, NC 28562

page 1 - 21

C
3 OF 3

GPC-1

W# 700843
80S0044

5-17-07

GPC-1C PCB

GPC-3 / Apr 2012

18 27 36 45

18 27 36 45

SA

SA

SA

- SA UR US - Sergey Averin -

DATE

SIZE REV

CONTRACT NO.

SCALE SHEET

DRAWN

CHECKED

ISSUED FSCM NO. DWG. NO.
D

APPROVALS

D

A

C

B

D

A

C

B

+3.3V

GND

+2.5V

GND

2.00KR15

C10 0.01uF

6.19KR11

TP2

TP3

L1

D1
MBRD835C17

0.22uF

Q2
12

3

45

6

7 LM2673
SSCL

OUTVIN
CB

GND

FB

C43
330uF

C42
1500uF

VCC

DCin

GND

5.6V
Z3
1SMB5919

5.6V
Z2
1SMB5919

5.6V
Z1
1SMB5919

R4
1.00K

+3.3V

GND
J5

R5
10.0K

VCC

R2
4.99K

GND

U2
1

4

5
6

7

8

DS1706

WDS

RST

NMI
PBRST

ST
IN

VCC

GND

+3.3V

GND

TP5

GND

VCC

GND

+2.5V

GND

TP4

D2BAT54

D3BAT54

+1.2V

GND

P9V

GND

VCC

GND

220R51
GND

C84
4.7uF

C82
4.7uF

C78
4.7uF

C75
4.7uF

3

1

2

U10

LT1117
GND

IN OUT

2

1

3

U7

LT1117
GND

IN OUT

GND

10.0KR25

C20
0.01uF

C25
47uF

C21
47uF

C33
47uF

C56
47uF

C24
47uF

C57
47uF

C91
47uF

100R23

2.00K
R28

C32
0.01uF

C30
3900pF

C38
22uF

C37
47uF

C26
47uF

C23
22uF

C15
4.7uF

GND

C70
1uF

R8
10K

1.0A

F1

POLYSW

C14
1uF

REG_SYNC

PWRGD12

+2.5V

P9V OUT5

CB5

FB5

FPGA_CDATA
X_PGRM

+2.5V

+1.2V

+2.5V OUT

+3.3V OUT

+1.2V OUT

5V

3.3V

2.5V

page 1 - 22GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

GPC-1 Controller Load Sheet

Top

Bottom

GPC-3 / Apr 2012

page 1 - 23GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

Front View

Rear View

GP-16P 16 Switch Programmable Switch Panel (W# 008709)
The GP-16P panel has sixteen switches that can be programmed for a variety of functions

by using the Ethernet-enabled GUI software (described in Chapter 2).
The unit has an RJ-45 connector for Ethernet connections and a DC power jack mounted

on the GPC-1PCB.

GPC-3 / Jan 2013

FACEPLATE 008759

W#PART NAME

REPLACEMENT PARTS

COAXIAL POWER JACK 260054

SWITCH NKK W/BRIGHTED RED LED 510290
WHITE CAP FOR SWITCH 530004

RJ-45 CONNECTOR UPRIGHT 260048

GP-16 PCB "L" BRACKET 008746

POWER WALL ADAPTER 980035
PLUG KIT FOR POWER ADAPTER 980037

page 1 - 24GPC-3 / Jan 2006

G E N E R A L I N F O R M A T I O NG P C - 3 H A R D W A R E

GP-16P Pinouts

1
2
3

4
5
6
7
8

TXD +
TXD -
RXD +

RXD -

RJ-45 Ethernet Connector

Plug the supplied AC adapter into the AC
mains and into the DC IN power jack on
the GPC-1PCB to power-up the panel.

GPC-3 / Jan 2013

SW10
12

3 4

SW12
12

3 4

SW11
12

3 4

SW14
12

3 4

SW13
12

3 4

SW16
12

3 4

SW15
12

3 4

C1
0.1uF

3433

3231

3029

2827

2625

2423

2221

2019

1817

1615

1413

1211

109

87

65

43

21

CT1
+3.3V

GND

VCC

GNDGNDGND

4148D11 P9V

GND GND GND GND

1.00K
R3

1.00K
R12

1.00K
R1

1.00K
R10

1.00K
R11

1.00K
R9

1.00K
R2

4148D10

4148D13

4148D12

4148D14

4148D9

4148D16

4148D15

SW9
12

3 4

39R13

39R14

39R15

39R16

GND

VCC

page 1 - 25GPC-3 / Jan 2006

80S0039
GP-16 PCB

8-4-05

SA

SA

WWP

- Wheatstone Corporation - GP-16

W# 700839

16 Programmable Switch Panel Schematic

D

A

C

B

D

A

C

B

1

1

8

8

2

2

7

7

3

3

6

6

4

4

5

5

D
DWG. NO.FSCM NO.ISSUED

CHECKED

DRAWN

SHEETSCALE

CONTRACT NO.

REVSIZE

DATEAPPROVALS

1 OF 1

SW2

43

2 1

SW4

43

2 1

SW3

43

2 1

SW6

43

2 1

SW5

43

2 1

SW8

43

2 1

SW7

43

2 1

4148D2

4148D1

4148D4

4148D3

4148D6

4148D5

4148D8

4148D7

SW1

43

2 1

39R5

39R6

39R7

39R8

600 Industrial Drive
New Bern, NC 28562

1.00K
R4

SW_X_2

LED_X_0

SW_X_3

LED_X_1

LED_X_1

LED_X_0

DSPL_RS

SW_X_5

SW_X_3

SW_X_1

SW_X_4

DSPL_DIN

SW_X_2

SW_X_0

LED_Y_6

LED_Y_4

LED_Y_2

LED_Y_0

LED_Y_7

LED_Y_5

LED_Y_3

LED_Y_1

SW_Y_1

SW_Y_3

SW_Y_5

SW_Y_2

SW_Y_4

SW_Y_6

DSPL_CLK

SW_Y_0

SW_Y_1

SW_Y_2

SW_Y_3

SW_Y_4

SW_Y_1

SW_Y_2

SW_Y_3

SW_Y_4

LED_Y_4

LED_Y_5

LED_Y_6

LED_Y_7

SW_X_0

LED_X_0

SW_X_1

LED_X_1

SW_Y_1

SW_Y_2

SW_Y_3

SW_Y_4

SW_Y_1

SW_Y_2

SW_Y_3

SW_Y_4

LED_Y_0

LED_Y_1

LED_Y_2

LED_Y_3

SW_Y_7

1

2

4

3

5

6

7

8 16

15

14

13

11

12

10

9

G P C - 3 H A R D W A R E

page 1 - 26GPC-3 / Jan 2006

GP-16P 16 Programmable Switches Load Sheet

GPC-3 Chassis Full Size Template
GPC-3 / Jan 2006 page 1 - 27

4
 D

ri
ll

C
en

te
r

M
ar

ks
fo

r
#

8
 S

cr
ew

s
3

/1
6

"
b
it

5.700

3.708

G P C - 3 H A R D W A R E

page 1 - 28GPC-3 / Jan 2006

GPC-3 TURRET MOUNTING TEMPLATE 008712

W#PART NAME

GPC-3 INSTALLATION KIT PARTS LIST

440X3/16 PHILLIPS PANHEAD S/S SCREW 820019

832X5/8 PHILLIPS PANHEAD S/S SCREW 820127

GPC-3 MANUAL 008713

GPC DESK TURRET 008700

W#PART NAME

GPC-3 SYSTEM PARTS LIST

GP-3 HEADPHONE PANEL ASSY 008705

GP-16P SWITCH PANEL ASSY 008709

GP-4W SWITCH PANEL ASSY 008707

GP-8P SWITCH PANEL ASSY 008708

GP-4S SWITCH PANEL ASSY 008706

GP-BK BLANK PANEL 008720

GP-U1 UNDER COUNTER MOUNT ASSY 008701

GP DUAL RACK FACE 008744

GPC INSTALL KIT 008711

GP PANEL ROUTING TEMPLATE 008718

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 1GPC-3 / Jan 2006

GP-8P/GP-16P Software

Chapter Contents

Overview ..2-2

Installation ...2-2

Setup ..2-2

Initial Tests ..2-3

Programming the Panel - an Example...2-4

Programming the Panel - Diving Deeper2-6

Startup Code ... 2-8

Looking at Your Script .. 2-8

LIO Settings .. 2-9

Finishing the Script ... 2-9

The Helpfile Example ...2-10

LIO Configuration Example ... 2-10

Configure the Signal .. 2-10

Configure the GP-16P LIOs ... 2-11

Create a Script Using the Script Wizard .. 2-13

About Changing the Panel’s IP Address ... 2-16

What’s Next? ... 2-17

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 2GPC-3 / Jan 2006

GP-8P/GP-16P Software

Overview
The GP-8P (eight button) and GP-16P (sixteen button) Programmable

Button Panels are designed to integrate with the Wheatstone Bridge Router
System and provide a variety of general purpose switching functions.
Installation is easy, requiring only an Ethernet connection and the provided
power supply. Each panel is shipped with the necessary software to write and
test scripts, which define the function of each button on the panel.

Installation
As mentioned above, installation is easy. Connection is made to the

Wheatstone system via an Ethernet cable to the hub or switch (see pages
1-16 and 1-24 for a typical Ethernet pinout). A wall wart type power supply
is connected to the panel and plugged into a 120 volt AC outlet. When the
panel’s power is applied, it will go through its normal boot sequence. If
something goes wrong, the buttons will continually flash a fixed pattern in
unison. If this happens, see the help file section on LED Error Codes.

Setup
The panel ships with a GUI (Graphical User Interface) program,

Gp16pConfigTool, that allows you to set up and program the device for your
application. Once the panel and the computer are running on the same
network, double-click on the Gp16pConfigTool icon to start the GUI. The
program will attempt to connect to the panel via Ethernet, and the panel will
then execute the last script that was loaded into it (more on this later).

The GUI needs to know the IP address of the panel in order to connect.
The default address is typically 192.168.1.221 for the first panel in a system,
but in any event there is a sticker on the panel showing the IP address it was
set to at the factory. To change the panel’s IP address, or to check it (in the
event that it was changed from its factory setting and this detail was not
marked in some eye-catching fashion on the panel), you can run the
WSNetServer utility program, discussed later. The IP address of the device
is mainly there to enable communication with the GUI, and is not a parameter
that needs to be set up anywhere in the Bridge system or its own GUI
(XPoint). However, if you are going to use the panel’s buttons to execute
commands on surfaces in the system, you will need to know the IP addresses
of the surface(s) you will be interacting with.

The GUI application’s title bar gives you some important status informa-
tion. As an example, let’s say the title bar says:

GP-16P Configuration Tool – MyPanel (On Line – Connected) –
[btn_test.ss]

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 3GPC-3 / Jan 2006

Let’s break this down and see what it’s telling us. GP-16P Configu-
ration Tool tells us that the application is used to configure the GP-16P
panel. Next we see the name we have given the panel we have selected
(more on selecting later); in this case, MyPanel. We can also see that the
program is in the On-Line mode, and that we have established a connection
between the GUI and the panel. Other possible combinations are On Line
– Connected, On Line – Not Connected, and Off Line – Not Connected.
If the title bar says Off Line , you can change this by selecting Device | On-
Line Mode. A check mark in front of On-Line Mode reaffirms that you are
in the On-Line mode. Lastly, we see that btn_test.ss is the open script; this
may or may not be the script that is currently loaded in the panel.

The panel’s buttons can be programmed in several ways. They may be
programmed to interact only with the panel’s own button LEDs (fairly
trivial to implement and also pretty much only useful as window decora-
tion). More interestingly, and also more importantly, the buttons can be
programmed to send commands to the Bridge Router for the purpose of
making, breaking, locking, unlocking, and querying the status of crosspoint
connections. Salvos can also be fired. And various commands can also be
sent to surfaces in the system to initiate actions and to query status. We call
your attention to the extensive help file, already alluded to under the
heading of Installation , that accompanies the GUI; several functions will
be mentioned in this brief introduction to the panel, but we encourage you
to plumb the depths of the help file to get you up to speed on the true power
of this system.

Initial Tests
Once you have the panel operating, it will begin running the last script

that was loaded to it. From the factory, this is typically a button test. Press
any button and it will light; release the button and the light goes out.

The GUI installation includes a small set of test scripts that will
demonstrate a few of the basic scripting features. Click on the File menu
and select Open... This will allow you to open any of the sample scripts.
Once a script has been loaded, you can edit it and print it. Depending on
how deeply into the scripting you want to get, it might be a good idea to
print out each of the scripts, run them, and try to grasp the correlation
between the script statements and the actions performed.

To run a script, you first need to compile it by selecting Build | Compile
(more useful if you’ve just edited a script and want to see if it compiles
before going any further) or Build | Compile & Download (if you know
the script is correct and just want to go ahead and send it to the panel).

Once you have the panel up and running, and have tried a few sample
scripts, you are then ready to try your hand at programming a script of your
own.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 4GPC-3 / Jan 2006

Programming the Panel – an Example
In order to do any useful work you’ll need to get past the canned scripts and

write one of your own. This section will attempt to help you work your way
through a simple example, that of using button 1 to turn a fader on on a surface.

As previously mentioned, the GUI ships with a decent help file. Even if you
don’t want to use all of the features at your disposal, you will need to actually
read a few of the help pages.

Since our chosen example involves sending a command to a surface, let’s
start by making sure the panel knows how to communicate with surface. But
before we can do anything, we need to make sure, in the case of multiple panels,
that we know which panel we are using. Select Device | Devices... to bring up
a list of panels the GUI is familiar with. If there is only one in the system, just
make sure that one is highlighted and press the Select button on the GP-16P
Devices form. If there are multiple entries, highlight the desired panel, then
press Select. Incidentally, this form is where you go to enter panels in the list
of known devices; the help file will explain how to do this. When you’re done
here, click Close to exit the form.

Now, let’s pretend the IP address of the surface we will control is
192.168.1.11. Select Device | Properties... to see the Device Properties form.
Surfaces should be highlighted in the left panel. In the box after Surface 1:
enter the IP address for the surface (this box will be grayed out if you are not
on line and connected to a panel). If you will be commanding other surfaces you
can enter their IP addresses now. When done, click OK . If you have changed
or added surfaces you will need to reboot the panel for the changes to take
effect.

A later section will show you how the other properties are used.
Now for the actual script. Select File | New... to discover the standard

Windows New File dialog box. Navigate to the desired directory where you
will store the script, then enter the name you have devised in the FileName: box
(I have chosen to use MyScript.ss for my example). If you fail to append
the .ss extension to the file name Windows will do that for you. Click Save
to create the file. A dialog box asks you if you would like to save you changes;
click Yes. Up pops the Script Wizard form. For the purposes of this script, just
click OK . But go ahead and delve into the Script Wizard when you get a
chance. It will make many things easier.

Now select View | Script Editor... If you’ve stayed with me this far the title
bar will say Script Editor: MyScript.ss . The top panel of the editor has a gray
background and contains text that has been generated for you by the Script
Generator. Code in that panel can’t be changed. You’ll enter your script in the
lower panel.

Carefully enter the following code in the lower panel. Enter everything
exactly as shown.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 5GPC-3 / Jan 2006

 What does it mean? First, there is an action involved – someone is
going to press button 1 on the panel (as signified by BTN_1_PRESS), and
when they do, we want to know it. And we’re going to light the button for
them (as signified by btn_led (1, ON), where the ‘1’ refers to button 1) so
they know that we know they pressed it. Now, after the line that lights the
button, and before the closing bracket (‘}’) that marks the end of the action,
add this code:

Your action should now look like this:

The action now does what it did before, plus it turns on fader 4 on surface
1 (as signified by surf_set_input_on (1, 4, ON), where the ‘1’ is the number
of the surface – remember we specified an IP address for Surface 1 – and 4
is the channel number on the surface we are affecting).

We’re almost done. Let’s see if we might have made any errors. First, if
you haven’t already done so, save changes by selecting File | Save. Now we
are going to compile our script and see if anything bad happens. Select Build
| Compile. If you did exactly as instructed, and if I instructed you properly,
you will be pleased to see that everything succeeded. But my computer tells
me that I have an undefined symbol “ON” at line 17. Where’s line 17?
Double-click on the word “ERROR” in the main GUI window, and notice
that the line “btn_led (1, ON)” gets highlighted in the Script Editor window.
The compiler is telling us it doesn’t know the meaning of “ON”.

Here’s what’s happening. The panel, when it runs a script, knows that if
we say “1” it wants us to turn something on; it just doesn’t know that “ON”
and “1” are the same. So we have to tell it by adding this line:

which makes the whole script look like this:

Now try Build | Compile again (don’t forget to Save your work first).
Now it says Okay...

So there’s our simple sample script. Go ahead and try to add some other
features, like turn the fader off from button 2 (hint, when we say “OFF” the
panel needs to hear “0”), for example.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 6GPC-3 / Jan 2006

Programming the Panel - Diving Deeper
The panel can also be used to interact directly with the system’s Logic

I/O cards. The help file has an excellent example that shows how to emulate
a mic channel control panel.

In addition, there are several other system interactions that can be accom-
plished with the panel. We will develop an example here that shows those
features and also introduces the Script Wizard.

Begin by selecting File | New to generate a new script. Let’s call this script
WS_Control.ss. Once you’ve specified the script name in the New File dialog
box, the Script Wizard form pops up. Unlike in our earlier example, this time
we will work with the wizard.

To begin with, you will see that Button 1 is highlighted in the tree view in
the left panel. Thus, anything we do in the right panel will apply to button 1.
Let’s program the first button to fire a salvo (in order for this to actually work,
you will need to have one or more salvos defined in the Wheatstone system –
see the Wheatstone BRIDGE Generation Digital Audio Network System
Technical Manual for details on creating salvos). For now, suffice it to say that
you will need to know the number of the salvo you want to fire. Select the Fire
Salvo radio button. You will see two parameters for this function, labeled
Press: and Release: on the form. The help file explains what parameters are
for – here we will just use them. In the box after Press: enter ‘1’ (without the
single quotes) and in the box after Release: enter ‘0’. What this does is to set
up the button so it will fire salvo 1 when it is pressed, and will not fire a salvo
when released. The button will be lit while it is pressed and go out when it is
released.

In the left panel select Button 2. In the right panel select Fire Salvo again.
This time put a ‘2’ in the Press: box and a ‘3’ in the Release: box. When you
are done and the panel is running (a set of circumstances we will begin to
assume as we describe how a button operates in the following paragraphs),
pressing button 2 will fire salvo 2, and releasing the button will fire salvo 3
(assuming that you have created three salvos). This can be a useful feature.
Suppose you have a surface monitor output, such as the CR (Control Room)
output, that normally outputs to a set of powered speakers on the other side of
the room, but you occasionally want to hear the signal being monitored from
a set of nearfield speakers nearby. One way to make this happen is to set up
one salvo to attach the CR output to the normal speakers and disconnect it from
the nearfield speakers, and another salvo to do the opposite. Set up the button
to fire the second of these salvos when pressed and the first when released.
Now when you press the button the nearfield speakers are in operation (and the
normal speakers are silent) and when you release the button the normal
speakers kick in and the nearfields mute. Once again the button is lit while held
and goes out when released.

In the left panel select Button 3 and in the right panel select Momentary
XYC . Let Source: be the signal ID of some audio source in your system
(perhaps 33, which might be a mic signal) and let Destination: be the signal
ID of some audio destination in your system (perhaps 1031, which might be
a surface fader). And let’s say that source 32 normally connects to the fader

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 7GPC-3 / Jan 2006

at destination 1031. Press the button (it lights) and the fader source changes
from the mic on 32 to the mic on 33; release the button (it goes out) and the
fader source changes back to the mic on 32. If the fader normally has no
source, pressing the button connects the mic on 33 to the fader, while
releasing the button returns it to its normal unconnected state.

Now select Button 4 and Connect XYC. Set Source: to 35 (we assume
this to be another mic for the purpose of discussion) and Destination: to
1032 (yet another fader on our surface). Pressing the button will light it and
make a connection between the mic signal and the fader. Releasing the
button will do nothing but turn its light off.

Select Button 5 and Toggle LIO (Momentary LIO is covered nicely
in the help file example alluded to earlier, which is reproduced in a future
section below). Select LED Drive: to be Internal . If we assume that input
LIO 5 (see later in this section) is currently off, pressing button 5 will turn
this logic input on, and pressing it again turns the logic input off. Nothing
special happens on button releases. The button is lit while the logic input
is on, and unlit when the logic input is off. By changing the LED Drive:
setting to External you can have the button’s light follow the output LIO
5 rather than the input LIO 5. The input LIO 5 always represents the state
of the toggle, whereas the output LIO 5 may or may not; it depends on how
you externally trigger the logic port corresponding to LIO 5.

Select Button 6 and Tally LIO . There are no parameters to set. When
output LIO 6 is on the button is lit, and when output LIO 6 is off the button
is extinguished. Pressing and releasing the button has no discernible effect.

Select Button 7 and Surface Preset. You must specify the Surf: by
number, from 1 to 8, corresponding to the surfaces you have defined under
Device Properties (discussed earlier). For the purpose of discussing this
example, I will assume that you want to fire a preset on a G-4 surface (the
significance of this choice will be revealed momentarily) with this button,
and that this is surface 1. So enter ‘1’ for the Surf: parameter. The G-4
surface presets do not have names, so you must supply the preset’s number
as the value of the Preset: parameter. Valid numbers are in the range of 1
to 4; let’s choose ‘2’. Pressing button 7 will fire preset 2 on surface 1. The
button will light while it is being pressed.

Now select Button 8 and once again select Surface Preset. This time
we will enter ‘2’ for Surf: and assume that surface 2 is, say, a G-6, which
has named presets (or events, as they are also referred to). Let’s say an
operator has named his favorite preset ‘LateNews’, and you want him to
use button 8 to select his preset. So enter ‘LateNews’ as the Preset:
parameter. IMPORTANT: you must spell the preset name exactly as it’s
spelled elsewhere in the system or the button won’t work. Pressing button
8 will fire the preset ‘LateNews’ on surface 2. The button will light while
it is being pressed.

We will leave the remainder of the buttons set to the default
None / Custom setting.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 8GPC-3 / Jan 2006

Startup Code
It is often useful to have some code execute when a script starts. When

using the Script Wizard, there may be some startup code generated for your
script automatically in the STARTUP action. If you have additional code
that needs to run at startup, you can’t just create another STARTUP action
in the user portion of the script. What you need to do instead is tell the
Script Wizard you’ll be adding some startup code of your own.

In the Script Wizard left pane, scroll down to Custom Action Hooks
and press the little ‘+’ sign next to that item’s icon to expand it. Then select
Startup. Put a name of your liking in the Subroutine Name: box, such as
‘myStartup’.

Looking at Your Script
Time to say goodbye to the wizard – click on the OK button. At this

time it might be constructive to print out your script. From the menu, select
View | Script Editor... to see your script. You’ll notice a bunch of stuff in
the upper panel, while the lower panel remains blank. Select File | Print...
to get a printout of your script (if you don’t have a way to print, you’ll just
have to look at it on the screen).

The script starts with a bunch of comment lines (recognized by the
distinctive // that starts them off), and then a few variables are declared.
After this an action named STARTUP is defined. Note the last line in
STARTUP says “call myStartup ()”. You will need to define your
own action with the name myStartup. If you don’t, the script will not
compile correctly. Enter the following code in the lower panel:

This is a very simple action that will light button 16; because it is called
from the script’s STARTUP action, it will be executed when the script
starts up.

Please note that, since you have told the script (via the wizard) that you
want the button 6 LED to light according to the state of the LIO 6 logic
output, if you then went on to specify 6 as the button to light in myStartup,
rather than 16, you may or may not see button 6 light, since it depends on
the state of the LIO 6 output. Which conveniently brings us back to the
topic we promised to eventually cover, that of the LIO settings.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 9GPC-3 / Jan 2006

LIO Settings
We use the LIO settings to map a button or its LED to a logic port in

the system. These logic ports may be real (as are the one that we deal with
in this section) or virtual (as are the ones used in the example in the help
file).

First we need to use the XPoint GUI application to set up the logic port
that we will be using to light the button 6 LED. Let’s use the first green box
in the Source area of the XPoint program to set up a logic input to monitor
an external event, such as a switch or other closure. Right-click on the box
and select Modify Signal Definition from the popup menu. On the Signal
Definitions form you will see that the signal Id is 1. Give the signal a
Name, such as ‘Tally 6’ (without the single quotes). Select Logic I/O Only
and put a check in the box after the LIO number 1 on the Logic I/O (1-6)
tab. Set Tier , Rack, and Card to point to an existing LIO card, and select
an unused input Port # — we use an input because we are monitoring an
external event, such as a switch closure, and getting that event into the LIO.
So set Direction to In . You can use pretty much any Function selection;
I will use OnTally because it describes how the button’s LED will be
acting. Apply your changes in XPoint.

Back in the GP-16P Configuration tool, open the Device Properties
form and highlight Output LIOs 1 – 8. We are going to map our just-
defined LIO to Output LIO 6 so we can light the button 6 LED as earlier
advertised. Put a check in the checkbox after Output LIO 6: and select a
Signal Type of Source (since we set up the LIO in XPoint as a source), a
Signal ID of 1 (since that’s the signal id of the Tally 6 source we created),
and an LIO of 1 (since that’s the LIO number we used to point to the logic
port). Click OK and the properties will be sent to the panel.

Finishing the Script
Now add any other code you might need to the script, compile it, and

send it to the panel. Start the script and verify the functions you’ve
programmed. Let me make just one more point to end this discussion.
Since we set up button 1 to fire a salvo, you’ll notice that the BTN_1_PRESS
action has been defined in the auto generated section of the script. If you
want to do some additional thing when button 1 is pressed, you can’t just
write another BTN_1_PRESS action in the user portion of the script,
because the script can only have one instance of any action. If you really
wanted button 1 to serve multiple purposes, you would need to leave it set
to None / Custom in the Script Wizard , then write your own
BTN_1_PRESS action, as was covered in an earlier section.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 10GPC-3 / Jan 2006

The Helpfile Example
As promised above, the example from the helpfile is duplicated here.

LIO Configuration Example
Setting up the LIOs properly in your system can be a daunting task.

This example is here to show how you could configure your GP-16P button
panel to work with a microphone source signal and provide some common
microphone type control.

For the sake of this example, let’s assume that we have a microphone
source named “JOES MIC” in our system. We will be placing a GP-16P
button panel next to the announcer, Joe. We would like to use some of the
GP-16P buttons to provide Joe with remote ON/OFF, cough, and talkback
capability. We would also like a tally light from the console to indicate
when Joe is on air.

Configure the Signal
The first thing we need to do is configure the “JOES MIC” source

signal with some virtual LIO signals to perform these functions. The
following figure shows how the LIOs will be defined for “JOES MIC” in
the XP GUI.

Defining a virtual LIO signal only differs from defining a real physical
LIO signal in that we do not require real physical hardware for the I/O.
Since the I/O is virtual and our GP-16P is emulating the hardware we will
point the LIO associated with JOE’s mic to an LIO card which is not
actually populated in the router rack. You must add an LIO card to your
“rack defs” dialog box, since this is the only way to reserve the tier, rack,
and slot numbers used for routing the logic. But the slot which you
allocated should not have a real LIO card inserted into it.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 11GPC-3 / Jan 2006

Things to take note of in this diagram are the signal number and the LIOs for each
logic function. The signal number and the LIO number will come into play when we
configure the logic I/O for the GP-16P.

 Item to Note Type ID
JOES MIC Signal Source 10
Remote ON LIO In 1
Remote OFF LIO In 2
Cough LIO In 3
Talkback LIO In 4
On-Tally LIO Out 5
Off-Tally LIO Out 6

Configure the GP-16P LIOs
Let’s assume that we want to use the first four buttons on our GP-16P to perform

these functions.

 Button Function Details
 1 ON The Remote ON LIO will be triggered when the

 button is pressed; the button LED will light to
 indicate that the channel is on air.

 2 OFF The Remote OFF LIO will be triggered when
 the button is pressed; the button LED will light to
 indicate that the channel is off air.

 3 Cough The Cough LIO will be triggered when the button
 is pressed and released when the button is released;
 the button LED will light to indicate that the button
 is down.

 4 Talkback The Talkback LIO will be triggered when the button
 is pressed and released when the button is released;
 the button LED will light to indicate that the button
 is down.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 12GPC-3 / Jan 2006

The Script Wizard assumes a one to one correlation between the LIO
number in the GP-16P device properties and the auto generated action
which the Script Wizard will generate. Therefore, we need to define the
LIOs in the device properties in the proper locations for the button
functions. The following figures show how we will define our LIO
properties in the GP-16P for this example.

Define the first four input LIOs to match the Remote On, Remote Off,
Cough, and Talkback LIOs for the “JOES MIC” signal. Take note that
these are configured as “Input” LIOs in the GP-16P since we are sending
this logic into the router matrix.

Define the first two output LIOs to match the On-Tally and Off-Tally
LIOs for the “JOES MIC” signal. Take note that these are configured as
“Output” LIOs in the GP-16P since we are reading this logic out of the
router matrix.

Also take note that the “Signal Type”, “Signal ID”, and “LIO” fields
are configured to match the values from the XP GUI signal definition
dialog box.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 13GPC-3 / Jan 2006

Create a Script Using the Script Wizard
Now we want to use the script Wizard to generate a script for the GP-16P.
Configure the first and second buttons to be Momentary LIO functions with

external LED drive. Then configure the third and fourth buttons to be Momentary
LIO functions with internal LED drive.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 14GPC-3 / Jan 2006

The auto-generated script code for the first two buttons will assert the
input LIO while the button is pressed and de-assert the input LIO when the
button is released. The button LED will light to indicate that the corre-
sponding output LIO is active.

The auto-generated script code for the third and fourth buttons will
assert the input LIO while the button is pressed and de-assert the input LIO
when the button is released. The button LED will light to indicate that the
button is down.

The following script will be generated. The button 1 and 2 actions
simply drive the LIOs and LEDs corresponding to the buttons. A periodic
timer drives the button 1 and 2 LEDs with the value read from the LIO
corresponding to those buttons. The button 4 and 5 actions simply drive the
LIOs and LEDs corresponding to the buttons.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 15GPC-3 / Jan 2006

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 16GPC-3 / Jan 2006

Note: In this example we have seen how the Script Wizard associates
a button with the corresponding LIO from the LIO definitions in the device
properties dialog box. This one to one correspondence is only a limitation
of the Script Wizard. If you are writing a custom script you may access any
LIO from any action or subroutine.

Changing the Panel’s IP Address
As promised, here’s how you change the IP address, if it becomes

necessary. First, know what you want the new IP address to be. Let’s
investigate a simple change, from 192.168.1.221 to 192.168.1.100. The
simplest way to do this is to set up a mini network with your computer and
the panel connected together through a hub. Using the hub removes some
complications that can arise if you’re running Windows XP, and keeping
the system small and simple results in less clutter in the WSNetServer
screens.

Fire up the Wheatstone utility program WSNetServer. This program
can be found on your system install CD if you don’t have it on the computer
you’re using now. When WSNetServer starts, you see the main program
window. The first thing you need to do is to “find” the panel. So select
Scan | Network... Up pops the Network Scan Results window, and you
should see a listing for MyPanel (or whatever name you’ve called your
panel), its MAC address, and its IP address. The Type shows up as “???”;
this is normal. Single-click anywhere along the line of text representing the
panel to highlight it. Then select Edit | Add Device... A message box pops
up that warns you of the consequences of having non-unique MAC
addresses co-existing on the same network. Click Yes. The next form to
appear is a Device Settings form. Click OK . That form goes away, leaving
behind the Network Scan Results window; clear this window from the
screen by clicking on the “X” in the upper right corner.

Information on the panel has now appeared in the WSNetServer main
window. You now need to select this device in the main window, but be
aware that you must click the entry in the Type column to select the device.
Now select Edit | Edit Device... The Device Settings form appears once
again. In my example, the IP Address: shows as 192.168.1.221. Change
“221” to “100” and click OK . The popup box informs you that the changes
will show up in the panel when you reboot it. Click OK .

VERY IMPORTANT: Do NOT exit from the WSNetServer program
until after the panel has been rebooted.

Unplug the panel’s wall wart, either from the AC power or from the
back of the panel, and then reconnect the power. Watch the Requests
column in the WSNetServer main window; the value should be “0” before
you reboot the panel and will change to “1” as the panel reboots. If this does
not happen your changes have not been saved in the panel, and you need
to do it over.

G P - 8 P / G P - 1 6 P S O F T W A R E

page 2 – 17GPC-3 / Jan 2006

What’s Next?
Read through the help file, try a few examples from there, then go

ahead and write the scripts you need. You can make life easier by
copying code from the help file and pasting it in the Script Editor.

GPC-3 / Jan 2008

A P P E N D I X

page Appendix – 1

Appendix

GP-16P Configuration Tool Programming Guide

Revision 1.1 – January 2008
Paul Picard

Wheatstone Corporation
Technical Documentation

GP-16P Configuration Tool
Programming Guide

• Programming Button Functions with the Script Wizard
• Creating Custom Scripts with the Script Editor

600 Industrial Drive

New Bern, NC 28562
252.638.7000

www.wheatstone.com

 i

Table of Contents

1 Introduction
1.1 GP-xx Hardware Compatibility... 3

2 What You Need to Get Started
2.1 GP-16P Configuration Tool Software .. 4
2.2 Physical Network Connection .. 4
2.3 IP Address Settings ... 4
2.4 XPoint Software ... 5
2.5 GP-16P Help File .. 5

3 Using GP-16P Configuration Tool Software
3.1 Programming Procedure Summary ... 6
3.2 Adding Devices .. 6
3.3 Toggle On-Line Mode .. 6
3.4 Create a New Script File ... 7
3.5 Script Wizard Button Functions ... 8
3.6 Compile the Script .. 9
3.7 Starting the Script ... 9
3.8 Testing .. 9
3.9 Reviewing the Script Wizard Code .. 10

4 Configuring Device Properties
4.1 Surface Configuration .. 11
4.2 Starting the Device Properties Dialog .. 11
4.3 LIO Configuration .. 12
4.4 Starting the Device Properties Dialog .. 12
4.5 Design Philosophy .. 13

5 LIO Example Using Device Properties
5.1 Configure the Source Signal in XPoint .. 14
5.2 Configure the GP-16P LIOs ... 15
5.3 Create the Mic Control Script Using Script Wizard ... 17
5.4 Reviewing the Script Wizard Code .. 18
5.5. Beyond the Script Wizard ... 19

6 What is the Script Editor?
6.1 Script Editor Features ... 20
6.2 Third Party Editors ... 21

7 Creating Custom Scripts
7.1 Getting the Example File .. 22
7.2 Example Script Design ... 22
7.3 Auto-generated Script Components .. 23
7.4 Custom Start up Subroutine... 23
7.5 Example Script Structure .. 24
7.6 Example Script –Variables and Constants .. 25
7.7 Example Script – Subroutines .. 27
7.8 Example Script – Actions .. 28
7.9 Custom Scripting Suggestions .. 29

 ii

Table of Contents (continued)

7.10 Scripting Router Control .. 29
7.11 Scripting Surface Control ... 29
7.12 Basic Surface functions .. 29
7.13 Advanced Surface Functions .. 30
7.14 Example surf_talk Commands .. 30

8 GP16P Scripting Language Overview
8.1 Case Sensitivity .. 31
8.2 Comments ... 31
8.3 Actions .. 31
8.4 Global Variables ... 31
8.5 Local & Static Local Variables ... 32
8.6 Constants .. 32
8.7 Arrays ... 32

9 GP16P Scripting Language Structure
9.1 Script Structure ... 33
9.2 Constant Declarations ... 33
9.3 Global Variable Declarations ... 33
9.4 Global Array Declarations .. 34
9.5 Local & Static Local Variable Declarations ... 34
9.6 Action Bodies ... 34
9.7 Action Parameters .. 35
9.8 Subroutine Bodies .. 35
9.9 Subroutine Parameters .. 35

10 Script Debugging
10.1 Finding Compiler Errors .. 37
10.2 Third Party Editors .. 37
10.3 Using “Print” and Telnet to Debug .. 38

Appendix A
A1 - Example Custom Script File – interlock16.ss ..40

 3

1 Introduction

This document will guide you through the process of programming a GP-8 or GP-16 panel using
the GP-16P Configuration Tool software. This primer document is aimed at familiarizing you
with the software’s fundamentals and quickly getting your GP-xx panel up and running using the
point and click Script Wizard. The Script Wizard will automatically generate computer code
based on your Button and Parameter selections. This code can be compiled and downloaded right
to your device from within the configuration tool.

Certain sections of this document use material located in the GP-16P Configuration Tool
software’s extensive Help file.

1.1 - GP-xx Hardware Compatibility
The GP-8 and GP-16 are eight and sixteen button versions of the panel and use an identical
hardware platform. Scripts written for an 8 or 16 button version will run on either one with the
obvious limitations stemming from the surplus or lack of buttons on the two panels.

 4

2 What You Need to Get Started

Before you get started programming let’s review all of the miscellaneous software and connection
issues.

2.1 - GP-16P Configuration Tool Software
Make sure you have installed the GP-16P Configuration Tool software that came with your
product’s install CD-ROM. If you do not have a copy, please contact Wheatstone Technical
Support at 252-638-7000 and we will email or FTP it to you.

This document uses screen shots from version 0.5.0 but the general process will apply to earlier
versions.

2.2 - Physical Network Connection
Editing of GP-xx devices requires a 100BTX Ethernet connection to the device. There are two
ways to connect:

100 BASETX LAN- the GP-xx device and PC are connected to a common 100BTX Ethernet
switch or hub typically with straight wired RJ-45 cables. This is the preferred method.

Peer to Peer – a simple cross-over wired RJ-45 cable between the PC and device. Note that when
the GP-xx device is power cycled Windows momentarily loses the network connection and takes
a moment to recover.

2.3 - IP Address Settings
Make sure your PC is configured to talk to the GPxx panel. The following rules apply:

• The device’s IP address is printed on a label affixed to the GP-xx panel .The default
factory IP address for GP devices starts at 192.168.1.221 with a subnet mask of
255.255.255.0.

• The PC running the GP-16 Configuration Tool MUST be on the SAME subnet as the
GP-xx device.

• For example if your GP-xx IP address is 192.168.1.221 then the NIC’s IP address must
be given a unique IP address on the 192.168.1.xxx subnet.

• WsNetServer software is used to assign unique static IP addresses to GP-xx panels.

Important:
GP-xx IP addresses are assigned and changed using

WsNetServer software.
Please refer to the WsNetServer documentation for details on changing a GP

panel’s IP address.

 5

2.4 - XPoint Software
The GP-xx panels may be programmed to control audio and logic signal cross-points, fire Salvos,
activate surface presets, and other functions. The GP-16 Configuration Tool may require you to
enter Source and Destination signal ID’s, Salvo indexes, and other numerical data based on ID
numbers generated in XPoint. You will need access to the XPoint software and your system’s
configuration to get the required information.

2.5 - GP-16P Help File
The GP-16P Configuration Tool software has an extensive Windows Help Menu system. You
will definitely want to utilize this asset while programming as it can be an invaluable aid,
especially when creating custom scripts.

 6

3 Using GP-16P Configuration Tool Software

OK, now that we have the network connection issues taken care of we can start the GP-16P
Configuration Tool software and program the panel to perform some basic functions using the
Script Wizard. The general procedure we will follow is listed below.

3.1 - Programming Procedure Summary
The steps required to program your GP-xx device are listed below - let’s review them and then
perform each in turn.

• Add the Device info to the GP-16P Software Tool
• Connect to the Device in Online Mode
• Create a New Script File
• Use Script Wizard to map functions to buttons
• Compile Script and Download to Device
• Start Script on the Device
• Test Functionality

If you haven’t already done so, start the GP-16P Configuration Tool Software.

3.2 - Adding Devices
If you previously ran the software, use the
Menu item Device->Devices… to Add or
Select your GP-xx.

Note: If this is the first time you started the
software or there are no GP devices saved,
the first prompt window you will see asks
for a Device Name and IP address. Go
ahead and enter this information.

3.3 – Toggle On-Line Mode
Click the menu choice Device>On-Line Mode.
Check that you are (On Line – Connected) in top of Title Bar.

Note: Certain
circumstances may

cause the software and
the GP panel to be out

of “sync”.
“On Line-Connected”
reported when in fact
you are not connected.
When in doubt simply
toggle On Line mode

OFF and ON.

 7

3.4 - Create a New Script File
Select the Menu item File->New and the Script Wizard opens automatically, once you have
specified a file name for the new script.

The Buttons list in the scroll pane on left side of the Wizard is where you select which GP panel
button you would like to program. Simply click on the button name to select it.

The right side of the Wizard is where you select a function for the selected button. Go ahead and
click through the various Functions. You will notice that the Parameters field will display various
data entry fields depending on the function selected. Parameters are usually integers that
correspond to signal ID numbers or Salvos as configured in the XPoint software.

 8

3.5 - Script Wizard Button Functions
The following functions may be mapped in any combination to the GP-xx buttons. Note
that in some cases a button may perform actions on both the Press and Release of the
switch. The Help file includes details; go to Contents>Script Wizard>Button Properties
for more information.

Function Summary
None/Custom – select this if you are not using the button or will write a custom script for the
button.

Fire Salvo –select this to fire a Salvo created in XPoint. Enter the Salvo’s Index number in the
Press and Release Parameters fields. Salvos are created in XPoint and are simply a stored set of
one or more routes and/or disconnects. The first Salvo in the XPoint Salvo list is index 1, second
in the list is 2, etc. You can have a different Salvo fire on both the Press and the Release of the
switch. Use this function when you need multiple “patches” to happen simultaneously, like
switching speaker and HP feeds to a shared talk studio.

Momentary XYC - XYC stands for X-Y Crosspoint- this option is used to momentarily interrupt
a destination with a new source. Useful for talkback or EAS, the interrupted Destination reverts
back to previous Source. Enter the Destination and Source signal ID numbers from your XPoint
configuration. Just mouse over the signal name in XPoint to get its number

Connect XYC – this function will make a one time X-Y Crosspoint route. Enter the Destination
and Source signal ID numbers from your XPoint configuration.

Momentary LIO –this function will trigger a logic connection ON. This function requires
mapping of the LIO in Device>Properties - see Section 4 or Help File for specific details.

Toggle LIO – this function with toggle the LIO state ON/OFF with each press of the button. This
function requires mapping of the LIO in Device>Properties – see section 4 or Help for specific
details.

Tally LIO – not available at this time – future: use this to turn the button into an indicator lamp.
The LED in the button will light when the logic condition is met.

Surface Preset – use this to take a Preset on a Wheatstone control surface. You need to specify
two parameters for this function:

Surf: - is the surface ID specified in the Device-> Properties form. Surface ID numbers
are mapped to the GP-xx panel using the menu choice Device->Properties…. Enter an IP
addresses for each surface the panel needs to talk to. Entering 1 for the Surf: parameter
will cause a button to talk to IP address associated with Surface 1: in the list.

Preset: -this parameter is case sensitive - Name of the Preset located on the surface.
Some surfaces like the G4 have only push buttons, so index numbers 1-4 map directly to
the buttons.

 9

3.6 - Compile the Script
Once you have mapped functions to the buttons you are ready to compile the auto-generated
Script Wizard code and download it to the GP-xx panel. To compile, select the Build-> Compile
and Download menu choice.

If successful you will see the following feedback on the screen.

3.7- Starting the Script
When the Compile and Download processes are
completed, you will be prompted to
Start the new script – choose Yes to start it.
Note that once the code is transferred into the
GP-xx non-volatile flash memory, it will boot your
Script every time the unit is powered up.

3.8 - Testing
Now its time to see the results of the code you have downloaded to the GP-xx panel.
Obviously, you can go to the button location and listen and watch for changes as you press the
buttons. An easy way to check many functions is to have the XPoint software running while you
press the buttons. If you align the grid so that the signals of interest are visible, you can watch as
temporary, or static connections are made. You can even watch as Salvos are taken to see
multiple connections change. This is handy when de-bugging scripts too. Because the button code
is portable, you can develop multiple scripts using a single button panel in your office or rack-
room, verify the code works as intended, and then download the working scripts to the designated
panels in a Studio or Control room.

 10

3.9 - Reviewing the Script Wizard Code
You can use the Script Editor to see the auto-generated (AG) code produced by the Script
Wizard. To view the code select menu item View->Script Editor…
Here is a sample Script and its code descriptions:

Wizard code starts here >
// precedes all Comments.

 Button types are listed as >
 Comments

Define variables >

Startup action calls function to
set Button 6 LED on power up.

Action sets LED 6 to ON or
OFF depending on the state of
LIO 6 on power up.

Action lights BTN1 LED and
Fires Salvo1.

Action clears BTN1 LED on
BTN1 release.

Action lights BTN2 LED, Stores
Source ID patched to Dest 22,
then connects Source 119 to Dest
22.

Release Action clears BTN2
LED then restores the stored
Source IF >0 to Dest 22.

A disconnect is performed if the
stored Source is = to zero.

 11

4 Configuring Device Properties

Some applications may require the GP-xx panel to talk to control surfaces or interact with certain
signals that have logic functions mapped to them. For instance you may wish to take a Preset or
turn a channel ON and OFF on a surface. You might also wish to use the GP-xx panel at a talent
microphone location in a studio. These applications require you to “tell” the GP-xx panel some
information about the surface and logic signals. This is what the Device Properties form is for.

4.1 - Surface Configuration
If you are using your GP-xx button panel to interface with a Wheatstone surface, you will need to
setup your GP-xx button panel with a list of each surface to which it will communicate.

The setup steps only need to be performed once since the setup information will be stored in the
button panel's Flash memory and on your PC. Select the device which you wish to setup, then use
the "Device Properties" dialog box to specify the surface IP addresses.

4.2 - Starting the Device Properties Dialog
Start the Device Properties Dialog by clicking on "Device" & "Properties..." on the main
window menu, or by pressing the <CTRL>-P keys. The following dialog box will appear. Select
"Surfaces" in the tree on the left side of the dialog box.

You may specify up to eight surface IP addresses. The top IP address corresponds to surface "1"
in the surface interface functions. This address will be used when you specify a "surfid" of "1" in
any of the surf_xxx functions within your scripts or when you select the "Surface Preset" option

 12

in the Script Wizard. The second IP address from the top corresponds to surface "2", the third
from the top is surface "3", etc. Unused surfaces should be left blank.

Note: The controls will be disabled if you are not connected to the GP-16P device. If you are
disconnected, you are actually looking at the device properties which are stored on your PC's hard
drive. These properties may not truly reflect the properties of your device, if the device has been
more recently configured from another PC.

4.3 - LIO Configuration
If you are using your GP-16P button panel to interface with Logic I/O on your Wheatstone router,
you will need to setup your GP-16P button panel with a list of each LIO which it will access.

• LIO configuration done here maps pre-defined XPoint signal logic to GP buttons for
Script Wizard programming. LIO1 maps to button1, LIO2 maps to button2, etc.

• Custom scripts can access any of the 16 input or output LIO’s.
• Virtual LIO’s may be created so you don’t eat up any physical logic i/o. Add a phantom

logic card to a rack in XPoint. See section 5 or Help for details.

The setup steps need to be performed each time you create a new script for a panel using mapped
logic. For example, Panel 1 is for the Host mic and uses Source ID 10, Panel 2 is Guest 1, Source
11. Update Device Properties before you script the Guest panel.

4.4 - Starting the Device Properties Dialog
While CONNECTED-ONLINE - Start the Device Properties Dialog by clicking on "Device" &
"Properties..." on the main window menu, or by pressing the <CTRL>-P keys. The following
dialog box will appear. Select one of the LIO items in the tree on the left side of the dialog box.

You may map up to 16 Input LIOs and 16 Output LIOs, one for each switch on a GP-16.
Input LIOs correspond to Logic I/O values which are fed IN to the router matrix. Typical types of
input LIOs would be from switches like ON,OFF, Cough, Talkback, remote logic signals

 13

associated with a microphone source. In a discrete hardwired system these signals would typically
come from a button on the announcer’s desk then be fed into an input logic line on an LIO card in
your audio router.

Custom scripts for your GP-16P can drive input LIOs using the lio_set() function.

Output LIOs correspond to Logic I/O values which are fed OUT of the router matrix. Typical
types of output LIOs would be machine start, machine stop, and ON and OFF tally logic signals
to drive remote panel switch LED’s associated with a microphone source. In a discrete hardwired
system these signals would typically come from an output logic line on an LIO card in your
audio router then feed to a logic line on your automation system or to a switch’s LED.

In your GP-16P you can read output LIOs using the lio_get() function.

The first input LIO corresponds to LIO id "1" in the lio_set() function, the second to LIO id "2",
etc.. The first output LIO corresponds to LIO id "1" in the lio_get() function, the second to LIO id
"2", etc..

Note: The controls will be disabled if you are not connected to the GP-16P device. In this
situation you are looking at the device properties which are stored on your PC's hard drive. These
properties may not truly reflect the properties of your device, if the device has been more recently
configured from another PC.

4.5 - Design Philosophy
During the design of the GP-16P we went back and forth on the merits of making the LIO
definitions a device property and using property table indexes in the script function calls vs.
specifying the LIO definitions directly in the script functions. We felt that the first approach
would provide greater value in that if your installation contains several GP-16P panels with
similar functionality, you can use one script for all of the GP-16P button panels and just modify
the device properties of each GP-16P.

Note: When you specify input LIOs for the GP-16P, you will typically select a logic line which is
also configured as an input LIO in the XP GUI program. You can point one of the GP-16P input
LIOs at a logic line which is configured as an output LIO in the XP GUI, and the GP-16P will
happily drive it. The negative side of doing this is, there might also be another GP-16P or a
physical logic card driving the same output LIO. The router has very extensive rules to arbitrate
who is driving output logic. These rules are basically bypassed, if you adopt the mixed direction
approach. It's much safer to define a new signal which has an input logic line, drive the new
signal's input logic line with the GP-16P, then connect the new signal to the signal which has the
output logic and let the router apply it's rules to the signal routing.

Note: When you specify output LIOs for the GP-16P, you will typically select a logic line which
is also configured as an output LIO in the XP GUI program. You can point one of the GP-16P
output LIOs at a logic line which is configured as an input LIO in the XP GUI, and the GP-16P
will happily read it.

 14

5 LIO Example Using Device Properties

Before we get on with the following example you should understand that there are two primary
ways to approach remote control of a surface channel using the GP-xx panel. You can use a
custom script to control a specific fader channel on a surface or you can use the Device Properties
to “point” the GP panel to a specific source signal, which has been configured in XPoint with
logic associations. The difference may appear to be subtle but it really dictates how your overall
script will be written. The former uses surface functions in a custom script while the latter uses
the Script Wizard.

This Help File example describes a relatively complex method using the Device Properties LIO
mapping feature. The method requires mapping LIO (logic in/out) resources to a virtual Logic
card in XPoint, then these pre-defined LIO’s are mapped to physical GP-xx panel buttons using
the Device Properties form in the GP-16P Configuration Tool software. Finally, the Script
Wizard is used to generate the script. This approach has two benefits- the resulting script is very
clean and the GP-xx panel follows the microphone source signal to whichever surface it
connected to.

For the sake of this example, let's assume that we have a microphone source named "JOES MIC"
in our system. We will be placing a GP-16P button panel next to the announcer, Joe. We would
like to use some of the GP-16P buttons to provide Joe with remote ON/OFF, Cough and Talkback
capability. We would also like to have the GP panel’s ON/OFF button LED’s follow the
console’s fader status.

5.1 - Configure the Source Signal in XPoint
The first thing we need to do is configure the "JOES MIC" source signal with some virtual LIO
signals to perform these functions. The following figure shows how the LIOs will be defined for
"JOES MIC" in the XPoint GUI.

Defining a virtual LIO signal only differs from defining a real physical LIO signal in that we do
not require real physical hardware for the I/O. Since the I/O is virtual and our GP-16P is

 15

emulating the hardware we will point the LIO associated with JOE's mic to an LIO card which is
not actually populated in the router rack. You must add an LIO card to your "Rack Defs" dialog
box, since this is the only way to reserve the "Tier, Rack & Slot" numbers used for routing the
logic. But the slot which you allocated should not have a real LIO card inserted into it.

Things to take note of in this diagram are the signal number and the LIOs for each logic function.
The signal number and the LIO number will come into play when we configure the logic I/O for
the GP-16P.

Item to Note Type ID

JOES MIC Signal Source 10

Remote ON LIO In 1

Remote OFF LIO In 2

Cough LIO In 3

Talkback LIO In 4

On-Tally LIO Out 1

Off-Tally LIO Out 2

5.2 - Configure the GP-16P LIOs
Let's assume that we want to use the first four buttons on our GP-16P to perform these functions.

Button Function Details

1 ON
The Remote ON LIO will be triggered when the button is pressed, the button
LED will light to indicate that the channel is on air.

2 OFF
The Remote OFF LIO will be triggered when the button is pressed, the button
LED will light to indicate that the channel is off air.

3 Cough
The Cough LIO will be triggered when the button is pressed and released
when the button is released, the button LED will light to indicate that the
button is down.

4 Talkback
The Talkback LIO will be triggered when the button is pressed and released
when the button is released, the button LED will light to indicate that the
button is down.

The Script Wizard assumes a one-to-one correlation between the LIO number in the GP-16P
device properties and the auto generated action which the Script Wizard will generate. Therefore,
we need to define the LIOs in the device properties in the proper locations for the button
functions. The following figures show how we will define our LIO properties in the GP-16P for
this example.

 16

Define the first four
input LIOs to match
the Remote On,
Remote Off, Cough
and Talkback LIOs
for the "JOES
MIC" signal.

Take note that these
are configured as
"Input" LIOs in the
GP-16P since we
are sending this
logic into the router
matrix.

Define the first two
output LIOs to
match the On-Tally
and Off-Tally LIOs
for the "JOES
MIC" signal.

Take note that these
are configured as
"Output" LIOs in
the GP-16P since
we are reading this
logic out of the
router matrix.

Important Distinctions

• The "Signal Type", "Signal ID" and "LIO" fields are configured to match the values from
the XP GUI signal definition dialog box.

• The LIO field value, 1 through 12, is NOT the Logic Card’s port number, but the
LIO Enabled # in the Signal Definitions form.

 17

5.3 - Create the Mic Control Script Using Script Wizard
Now we want to use the Script Wizard to generate a script for the GP-xx.

Configure the first and second buttons to be Momentary LIO functions with External LED
drive.

Then configure the third and fourth buttons to be Momentary LIO functions with Internal LED
drive.

 18

5.4 - Reviewing the Script Wizard Code
The following script will be generated. The button 1 & 2 actions simply drive the LIOs and LEDs
corresponding to the buttons. A periodic timer drives the button 1 & 2 LEDs with the value read
from the LIO corresponding to those buttons. The button 3 & 4 actions simply drive the LIOs and
LEDs corresponding to the buttons.

//AG_START//AG_START
// All code between the AG_START and AG_END tags is auto
// generated and should not be modified.
// Script Generator GUI V1.1.1
//AG_BTN1 TYPE="LIO_MOMENTARY" LED="1"
//AG_BTN2 TYPE="LIO_MOMENTARY" LED="1"
//AG_BTN3 TYPE="LIO_MOMENTARY" LED="0"
//AG_BTN4 TYPE="LIO_MOMENTARY" LED="0"

variable: AG_scratch // Temporary scratch pad variable for AG actions.

action: STARTUP
{
 AG_scratch = tmr_create_periodic (3, "AG_TIMER_FUNC")
}

action: AG_TIMER_FUNC //LIO 1 and 2
{
 btn_led (1, lio_get (1)) // get LIO 1 value and light LED1 (ON) if true
 btn_led (2, lio_get (2)) //get LIO 2 value and light LED2 (OFF) if true
}

The auto-generated script code for the first two buttons will assert the input LIO while the button
is pressed and de-assert the input LIO when the button is released. The button LED will light
from the results of the periodic timer query in section above..

action: BTN_1_PRESS //mapped as REMOTE ON in Device Properties
{
 lio_set (1,1)
}
action: BTN_1_RELEASE
{
 lio_set (1,0)
}

action: BTN_2_PRESS //mapped as REMOTE OFF in Device Properties
{
 lio_set (2,1)
}
action: BTN_2_RELEASE
{
 lio_set (2,0)
}

 19

The auto-generated script code for the third and fourth buttons will assert the input LIO while the
button is pressed and de-assert the input LIO when the button is released. The button LED will
light to indicate that the button is down.

action: BTN_3_PRESS //mapped as COUGH in Device Properties
{
 btn_led (3,1)
 lio_set (3,1)
}
action: BTN_3_RELEASE
{
 btn_led (3,0)
 lio_set (3,0)
}

action: BTN_4_PRESS //mapped as TALKBACK in Device Properties –puts surface fader in
 //CUE speaker
{
 btn_led (4,1)
 lio_set (4,1)
}
action: BTN_4_RELEASE
{
 btn_led (4,0)
 lio_set (4,0)
}

//AG_END

Note:
In this example we have seen how the Script Wizard associates a button with the corresponding
LIO from the LIO definitions in the Device Properties dialog box. This one-to-one
correspondence is only a limitation of the Script Wizard. If you are writing a custom script you
may access any LIO defined in Device Properties from any action or subroutine.

5.5 - Beyond the Script Wizard
The Script Wizard is a nice way to get some fundamental features up and running quickly and
will suffice for many broadcast applications. Certain applications with multiple panels in which
actions are triggered under Boolean conditions are a bit more complex and will probably require
some head scratching and, you guessed it –a custom script.

 20

6 What is the Script Editor?

The Script Editor is a specialized text editor built into the GP-16P Programming tool. This editor
provides a convenient way to write custom scripts and also view Script Wizard code.

GP-xx scripts are actually specially formatted text files saved with a “.ss “ file extension.
.
The Script Editor automatically separates the Script Wizard code from your custom code by
dividing the file into two panes – the top “read only” pane has a gray background and houses the
AG or auto generated Script Wizard code. The bottom pane is the editable text editor pane used
for writing your own scripts.

6.1 - Script Editor Features

• Script Wizard code is separated and displayed in a “read only” pane.
• Script text is displayed in a “context sensitive” color scheme with comments in green, and

keywords in blue.
• Standard text select, cut, copy, paste, undo, and redo functions.
• Compiler error finder jumps the cursor to problem line when the reported error is clicked.

 21

6.2 Third Party Editors
Scripts may also be opened, written, and edited in a programming oriented editor but care must be
taken to be sure that the file structure, formatting, and script syntax is maintained. Avoid using
generic text editors like Notepad or Wordpad for script creation. You will know right away at
Compile time if there is a problem

If you plan on doing a lot of scripting you might consider using a third party programming editor.
Notepad++ is a nice freeware editor. When you open a GP script in Notepad++, you can choose a
“Language” skin, like “Flash actionscript”, that will give you line numbers and a context sensitive
text color scheme. You will still have to open the file in the GP16P tool before you compile – be
sure to save the file in the editor first.

You can do an Internet search for “Notepad++” to download this editor.

 22

7Creating Custom Scripts

A good way to learn how to write custom scripts is through experimentation - so we will open a
custom script and examine the format and syntax of the file. Then feel free to edit button behavior
and add features. You can also use the Script Wizard to generate code to see specific function
examples, then copy and paste into a new file for further experimentation.

7.1 - Getting the Example File
The example script file, interlock16.ss, is located in Appendix A of this document and may be
copy and pasted into the Script Editor user’s window. Copy and paste details are located in
Appendix A.

7.2 - Example Script Design
The custom script used in this example is designed to act as an “interlocked” source selector with
latching LED indicators. Each button will “patch” an audio Source to a common Destination and
light the button’s LED on the panel. The button’s LED must be “latched” ON so the operator
knows which button is currently selected. “Interlocked” simply means that with each button press
the previous source and LED are disconnected and are replaced by the current button press. In
logical terms the 16 switches and LED’s are “exclusive OR’d”.

 Open the Script Editor by choosing View->Script Editor…

 23

7.3 - Auto-generated Script Components
Notice that the first section of the custom script has a few lines of auto-generated code. These are
minimum startup lines and must not be altered or deleted.

//AG_START
// All code between the AG_START and AG_END tags is auto
// generated and should not be modified.
// Script Generator GUI V1.1.1

variable: AG_scratch // Temporary scratch pad variable for AG actions.

action: STARTUP // The startup action is empty because blank a new file has no Start requirements.
{ // You can use the Script Wizard to point this startup to your own startup subroutine.
} //See the next section for details.

//AG_END

7.4 - Custom Start up Subroutine
Let’s digress for a moment- sometimes you might want your panel to startup in a special state
prior to any button actions. Or perhaps the LED’s in your design are being driven from remote
logic states and you’d like to synchronize them on power-up of the GP –xx panel.

Use the Script Wizard’s Custom Action Startup dialog to point to your startup subroutine. In the
case below we will call “mystartup” subroutine when the GP-panel powers up.

 24

Resulting code with new subroutine and some structure comments added.

//AG_START
// All code between the AG_START and AG_END tags is auto
// generated and should not be modified.
// Script Generator GUI V1.1.1
//AG_HOOK TYPE="STARTUP" ACTION="mystartup"

variable: AG_scratch // Temporary scratch pad variable for AG actions.

action: STARTUP
{
 call mystartup ()
}

//AG_END
//*** **************************
// Custom Script starts here
//*** *************************
//Define global variables first
//Define Constants next
//Define actions and subroutines last

// The subroutine “mystartup” is called by the AG code's STARTUP action
//when first powered up or the Script is re-started.

subroutine:mystartup
{
//put your startup code here

}

// Custom Script ends

7.5 - Example Script Structure
Now back to the Example interlock16.ss script file. The first thing you will notice in the example
script is a comment. Comments are extremely useful as they help you and anyone else working
with the script understand and decipher what is going on. Comments must always start with a
double forward slash

//this is a comment line

Comments are ignored by the compiler and can contain any characters. You can have as many
comments as you’d like in your script.

 25

Scripts must follow a certain format in order for the compiler to evaluate it correctly. The
example script follows this format:

• AG Start code – auto-generated code from the wizard and a basic startup action.
• This code must be present even if you plan on scripting all of the button functions and

generally should not be modified. This code is only displayed in the Script Editors top
window. The top window does not allow editing.

• Constants and variables - define all your constants and global variables first. Example

constants are Source or Destination signal ID numbers, words that make your script
easier to read and write like ON- OFF, LED5, etc. Constants are fixed and never change
during run time. Variables may be local or global in scope and may be modified during
runtime.

• Global variables are listed at the top along with constants and are “visible” anywhere in

the script.

• Actions and Subroutines- next comes the main components of your script. It does not
matter which order you put these in but it makes sense to keep all button actions together
for readability.

• Local variables are defined within the curly braces of an action or subroutine and are only
“visible” within that action or subroutine

Let’s look at the example code in sections.

7.6 - Example Script –Variables and Constants
The example script needs to know which switch is pressed and when to light its LED. We also
have to map the destination we want to route to and define the sources to be switched.

You seldom know all the variables your script will require when you begin, so just add them here
at the top as you go. It makes sense to group certain variables according to how they are used in
the script. This can make reading and deciphering the script easier now and when you have to edit
it a year from now!

// Custom Interlock switch code
//*** ************************************
*
variable //intentional error - no colon after the word variable -no variable name
constant: ON = 1
constant: OFF = 0 // Constants can be mixed in with variables as you see fit.
variable: led_num = 1
variable: switch = 0
variable: source = 0
variable: current_switch = 0
variable: last_led = 0

 26

Comments added to the Constants section help readability. Notice how the Destination and
Sources are defined as constants. These signal ID numbers could have been “hard coded” as
numbers in the Action section but are easier to modify in the future by listing here. Additional
comments could include the Source signal names in XPoint or the constant names could even be
the Source signal names – whatever makes the most sense to you the programmer.

//*** ***********************************
// Map the destination you want to switch sources to here
//*** ***********************************
constant: dest_a = 1 // select destination id# in router for this 16x1 line selector

//*** **********************************
//map source signal id's to buttons 1 through 16
//*** **********************************
constant: source1 = 11 //change the 11 to another Source signal id# as required
constant: source2 = 12
constant: source3 = 13
constant: source4 = 14
constant: source5 = 15
constant: source6 = 16
constant: source7 = 17
constant: source8 = 18
constant: source9 = 109
constant: source10 = 110
constant: source11 = 111
constant: source12 = 112
constant: source13 = 113
constant: source14 = 114
constant: source15 = 115
constant: source16 = 116 //change the 116 to another source signal id# as required

 27

7.7 - Example Script – Subroutines
The example script uses two subroutines – one to handle the switch presses and one to store the
last switch pressed so it’s LED can be turned OFF on a subsequent switch press. Note that a
custom startup routine was not included. Try writing a startup subroutine that figures out which
source is currently feeding “dest_a” and then light the appropriate button’s LED.

The first subroutine – handle_sw_press - is called by the Button Actions defined at the end of
the Script. Button Actions “pass” two variables, $1 and $2 to this subroutine.

This subroutine:

• Modifies the value of “switch” to equal $1 and “source” to equal $2.
• Turns OFF the previously selected switch’s LED.
• Calls subroutine to store the currently selected switch number.
• Connects the currently selected source.
• Lights the LED in the currently selected switch.

This subroutine includes a “Print” statement to print a message to a Telnet window –please see
the Script de-bugging section for details on using Print and Telnet.

//***********************
// Subroutines
//***********************

subroutine: handle_sw_press //This subroutine does most of the work.
 //It receives switch# and source info from the button
 //press actions.
{
 switch = $1 // $1(reads “string one”) is the switch number passed here when subroutine called by
 // action.
 source = $2 // $2
 btn_led (last_led, OFF)
 call store_switch (switch)
 connect (dest_a, source) //dest_a is a fixed destination defined above as a constant
 btn_led (switch, ON)

 print ("connecting Source ID " # source # " to Dest " # dest_a # ".")
}

The second subroutine simply receives a variable value, “switch”, and stores it. Note that this
could have been done in the “handle_sw_press” subroutine, but as an exercise this illustrates
variable passing and subroutine nesting. Notice that the variable “current_switch” was never used
in the script.

subroutine: store_switch //
{
 current_switch = $1 // string 1 passed here = value of the “switch” variable in the calling subroutine.
 last_led = $1 // the “last led” variable is set to = the “switch” variable.
}

 28

7.8 - Example Script – Actions
For this example each button is given its own Press action. Release and Over-press actions were
not required. By putting the “guts” of the script behavior in Subroutines, the Actions are kept
simple and straight forward. Each button press uniquely sets the value of “switch” and “source”
and then passes those variables to the “handle_sw_press” subroutine.

// Button press section
// *****************************
action: BTN_1_PRESS
{
switch = 1
source = source1
call handle_sw_press(switch, source)
}

action: BTN_2_PRESS
{
switch = 2
source = source2
call handle_sw_press(switch, source)
}

action: BTN_3_PRESS
{
switch = 3
source = source3
call handle_sw_press(switch, source)
}

action: BTN_4_PRESS
{
switch = 4
source = source4
call handle_sw_press(switch, source)
}

action: BTN_5_PRESS
{
switch = 5
source = source5
call handle_sw_press(switch, source)
}

action: BTN_6_PRESS
{
switch = 6
source = source6
call handle_sw_press(switch, source)
}

action: BTN_7_PRESS
{
switch = 7
source = source7
call handle_sw_press(switch, source)
}

action: BTN_8_PRESS
{
switch = 8
source = source8
call handle_sw_press(switch, source)
}

action: BTN_9_PRESS
{
switch = 9
source = source9
call handle_sw_press(switch, source)
}

action: BTN_10_PRESS
{
switch = 10
source = source10
call handle_sw_press(switch, source)
}

action: BTN_11_PRESS
{
switch = 11
source = source11
call handle_sw_press(switch, source)
}

action: BTN_12_PRESS
{
switch = 12
source = source12
call handle_sw_press(switch, source)
}

action: BTN_13_PRESS
{
switch = 13
source = source13
call handle_sw_press(switch, source)
}

action: BTN_14_PRESS
{
switch = 14
source = source14
call handle_sw_press(switch, source)
}

action: BTN_15_PRESS
{
switch = 15
source = source15
call handle_sw_press(switch, source)
}

action: BTN_16_PRESS
{
switch = 16
source = source16
call handle_sw_press(switch, source)
}

 29

7.9 - Custom Scripting Suggestions
Before you embark on your scripting expedition take the time to map out the requirements in a
spread sheet or note pad. Spending a bit of time in the planning phase can save you some
headaches later on and will at least make it easier to stay focused on coding once you start getting
deep into it. Also writing out the requirements, (i.e. Turn the xx ON when yy AND zz are true
OR nn is NOT true) can be helpful for scripting complex logic statements.

The GP Scripting language is a cross between the C and Basic programming languages. Correct
syntax is essential, and is a common source of compiler errors so be sure to carefully check case
sensitive spelling, braces and parentheses placement, etc. whenever you get a compiler error.

7.10 - Scripting Router Control
By now you have been exposed to many of the router control functions available. You can review
in detail the complete set of Router Functions available by opening the Router Functions section
of the Help file. There you will find information on the using the following:

Router Function Description
Connect Makes a cross-point connection in the router.
Disconnect Breaks a cross-point connection in the router.
Lock Locks a cross-point connection in the router.
Unlock Unlocks a cross-point connection in the router.
Connection Queries a destination to find out what source is connected to it.
Locked Queries a destination to find out if it is locked.
Fire_salvo Fires a pre-defined Salvo - requires the Salvo ID number.
Find_src Returns the source signal ID number when you know the source name and

location.
Find_dst Returns the destination signal ID when you know the dest name and location.
Find_salvo Returns a Salvo ID number when you know the Salvo name.
Lio_get Returns the current value – 1 or 0 – of a logic signal in the router.
Lio_set Sets the value – 1 or 0 – of a logic signal in the router.

7.11 - Scripting Surface Control
Control Surfaces may be directly controlled using a built in surface script functions. You can find
detailed information on these functions in the Help file’s “Surface Functions” section.

Surface Functions can be divided into two groups. The first set of basic functions control the
rudimentary tasks of taking a surface preset, getting a fader’s ON status, and turning a fader
channel ON. The second “advanced” set allows you to utilize the Automation Controller protocol
built into each surface.

7.12 - Basic Surface functions
These functions may be used directly in your script and require a minimum amount of scripting
knowledge.
surf_take_preset – takes an “Event’ stored on a surface. The surface ID parameter is an index into
the surface list entered in the Device Properties form.

surf_get_ input_on – returns the channel ON status; 1= ON, 0 = OFF.
surf_set_input_on – turns a channel ON or OFF.

 30

7.13 - Advanced Surface Functions
These functions require just a bit more programming knowledge to implement correctly. The
function “surf_talk” is very powerful because it allows you to use all of the surface’s Automation
Control Interface (ACI) command set. The automation protocol is ASCII based which makes it
easy to incorporate ACI commands using the built in surface functions. Virtually every switch,
fader level, knob settings, etc. is accessible. The ACI commands are available on an “as needed”
basis for Wheatstone customers. Please contact a Customer Support representative for details on
acquiring this information.

surf_talk – use this to send ACI commands to a surface.
surf_reply – use this to retrieve the last reply received from a surface.
surf_string- use this to parse a reply string.

7.14 - Example surf_talk Commands
If you are reading this then your curiosity must be piqued so here are a couple of examples of the
syntax required for use with surf_talk.

surf_talk (1, “INPUT:7|FADER:192”) // sets fader 7 to 0dB on surface 1.

surf_talk (2, “INPUT:4|ON:0”) // turns channel 4 OFF on surface 2.

surf_talk (3, (“INPUT:5|CUE:1”) //puts fader 5 in CUE on surface 3.

The Surf ID used in the examples above comes from the list of Surfaces defined in Device
Properties.All of these ACI commands generate replies from the surface that may be stored,
parsed, and acted upon in your script. Fader values fall into the range of 0-256. Note that nominal
dB level conversions to integers suitable for use with “surf_talk” vary by surface type and may be
calculated using special set of equations, which are available on request along with the ACI
commands.

 31

8 GP16P Scripting Language Overview

The following Script Language overview may be found in the GP-16PConfiguration Tool’s Help
file. The Overview and Structure sections are included for reference and will give you an idea
how a script is built.

Please refer to the Help File for specific details on writing Statements, Boolean Expressions, etc.

 The scripting language used to define virtual machine instructions for the programmable button
panel is a very simple language to learn. If you are familiar with C or Basic or any number of any
other languages you should feel at ease writing scripts for the GP16P in no time.

8.1 - Case Sensitivity
Everything in a script file is case sensitive. The identifiers "xYz" and "xyz" are not equivalent.

8.2 - Comments
A comment starts with two forward slash characters. Once a comment starts all characters are
ignored until the end of the current line. A comment can also start with /* and end with */. The
following example shows some comments.
// This is a comment
// More comments can make your script easier to read

 x = x + 1 // Comments can end a line of script code

 /*
 This is a
 multiline comment
 */

8.3 - Actions
Actions are the basic execution unit of a script. A typical script will contain several action
definitions. Events that occur within the GP16P will trigger an action.

Action names can be any unique non-reserved identifier. An identifier can be up to 32 characters
long. The first character must be a letter; the following characters may be letters, numbers or the
underscore character ("_").

8.4 - Global Variables
Scripts may have an unlimited number of global variables. Global variables have visibility
throughout the script file. Every action and subroutine has visibility to a global variable. Global
variables retain their values between execution of each action.

 32

Variable names can be any unique non-reserved identifier. An identifier can be up to 32
characters long. The first character must be a letter; the following characters may be letters,
numbers or the underscore character ("_").

All variables in the scripts are treated as character strings. You can define a variable (ie x), assign
a text string to x, perform some string operations on x, then assign a number to x, and perform
mathematical operations on x.

8.5 - Local & Static Local Variables
Script actions and subroutines may have an unlimited number of local variables. Local variables
have visibility throughout the action or subroutine, but do not have visibility from within other
actions or subroutines. Static local variables retain their values between execution of each action
or subroutine.

8.6 - Constants
Scripts may have an unlimited number of constants. Constants have visibility throughout the
script file. Constants have all the same properties as global variables, except that you can not
assign a value to a constant at runtime.

Constant names can be any unique non-reserved identifier. An identifier can be up to 32
characters long. The first character must be a letter; the following characters may be letters,
numbers or the underscore character ("_").

8.7 - Arrays
Scripts may have an unlimited number of global arrays. Global arrays have visibility throughout
the script file. Each element of an array has all the same properties as global variables.

When an array is declared an array dimension is also declared. When indexing elements of an
array, the first element has an index value of zero. This is the same as arrays in the C language.

Out of bounds write access to an array will be ignored. Out of bounds read access to an array will
return an empty string.

Array names can be any unique non-reserved identifier. An identifier can be up to 32 characters
long. The first character must be a letter; the following characters may be letters, numbers or the
underscore character ("_").

 33

9 GP16P Scripting Language Structure

9.1 - Script Structure
The structure of a script file is shown below. Global variable declarations must be done at the
start of the file before any actions are defined. There can be any number of actions defined in the
script file. Comments may appear at any point in the script file.
constant declarations
variable declarations
array declarations
action bodies
subroutine bodies

9.2 - Constant Declarations
A constant declaration begins with the keyword "constant:" followed by the constant name and a
value assignment. The following example shows the structure of constant declarations.
constant: name = number
constant: name = "string"

The following example shows the declaration of two constants. The first global constant "c1" is
initialized with the numeric value of 1000. The second constant "c2" is initialized with the string
"Have a nice day.".
constant: c1 = 1000
constant: c2 = "Have a nice day."

9.3 - Global Variable Declarations
A global variable declaration begins with the keyword "variable:" and the variable name. After
the variable name an optional assignment may be specified. The following example shows the
structure of global variable declarations.
variable: name
variable: name = number
variable: name = "string"

The following example shows the declaration of three global variables. The first global variable
"v1" is not initialized. The virtual machine will initialize this variable to an empty string. The
second global variable "v2" is initialized with the numeric value of 10 . The third global variable
"v3" is initialized with the string "Hello World".
variable: v1
variable: v2 = 10
variable: v3 = "Hello World"

 34

9.4 - Global Array Declarations
A global array declaration begins with the keyword "array:" and the array name. After the array
name an array dimension must be specified. Arrays may be one or two dimensional. The
following example shows the structure of global array declarations.
array: name [size]
array: name [size][size]

The following example shows the declaration of two global arrays. The first global array "a1" has
ten elements and the second global array "a2" has 100 elements.
array: a1[10]
array: a2[100]

The following example shows the declaration of a two dimensional global array.

array: a1[10][4]

Note: The virtual machine treats all arrays as one dimensional. The compiler will flatten all two
dimensional array accesses into a single dimension linear array.

9.5 - Local & Static Local Variable Declarations
A local variable declaration begins with the keyword "variable:" and the variable name. After the
variable name an optional assignment may be specified. The following example shows the
structure of local variable declarations.
variable: name
variable: name = number
variable: name = "string"

The following example shows the structure of static local variable declarations.

static variable: name
static variable: name = number
static variable: name = "string"

The example in the Action Bodies section shows the use of a temporary and a static local
variable.

9.6 - Action Bodies
An action declaration begins with the keyword "action:" followed by the action name, then an
opening curly brace. Any number of statements may reside within the action body. The end of an
action is indicated by a closing curly brace. The following example shows the structure of an
action body.
action: name
{
 local variable declarations
 statements
}

 35

The following example shows a typical action body. This action is named "BTN_1_PRESS". It
has two local variables. The variable "count" is a static variable that will be incremented each
time the action is executed. After the count is incremented a message string is built up with the
count included and the message is printed to the console (a Telnet window).

// ---
// This action will print the messages:
// SVM: This action has been executed 1 times.
// SVM: This action has been executed 2 times.
// SVM: This action has been executed 3 times.
// SVM: This action has been executed 4 times.
// etc ...
// ---
action: BTN_1_PRESS
{
 static variable: count = 0
 variable: message

 count = count + 1
 message = "This action has been executed " # count # " times."
 print (message)
}

9.7 - Action Parameters
When an action is executed a set of four parameters will be passed to the action. All four
parameters are not always used. If a particular action type does not use all four parameters, the
unused parameters will contain empty strings.
The meaning of the parameters is specified by the source of the action, see the section action
types. Action parameters are accessed by the built-in variable names "$1", "$2", "$3" and "$4".

9.8 - Subroutine Bodies
A subroutine declaration begins with the keyword "subroutine:" followed by the subroutine name,
then an open curly brace. Within the subroutine body are any number of statements. The end of a
subroutine is indicated by a closing curly brace. The following example shows the structure of a
subroutine body.
subroutine: name
{
 local variable declarations
 statements
 optional return
}

9.9 - Subroutine Parameters
When a subroutine is executed a set of four parameters will be passed to the subroutine. All four
parameters are not always used. If a particular action type does not use all four parameters, the
unused parameters will contain empty strings.
Subroutine input parameters are accessed by the built-in variable names "$1", "$2", "$3" and
"$4". The following example shows the use of parameters within subroutines.

 36

A Subroutine may return one parameter to the caller. The caller will access the returned
parameter through the built-in variable name "$0". This parameter will remain valid until the next
subroutine call is made.
subroutine: sum_up_1
{
 var sum
 sum = $1 # $2 # $3
 return sum
}

subroutine: sum_up_2
{
 return ($1 + $2 + $3 + $4)
}

subroutine: print_sum
{
 print_sum ("Sum = " # $1)
}

//---
--
// This action will result in the followinfg message on the console:
// SVM: Hello World
// SVM: Sum = 100
//---
--
action: test_action
{
 call sum_up_1 ("Hello", " ", "World")
 print ($0)
 call sum_up_2 (10, 20, 30, 40)
 call print_sum ($0)
}

 37

10 Script Debugging

If you have delved into writing your own scripts you will inevitably have to debug them -
if only to root out spelling or other minor syntax errors. Programming and debugging go
hand in hand. Fortunately there are a couple of very useful tools to aid you in your time
of need.

10.1 - Finding Compiler Errors
The “jump to error” feature in the Script Editor allows you to click on a reported
compiler error in the Main GP16P window to jump to the line in the Script near or where
the error is present. This feature is handy for tracking down bugs in scripts that will not
compile. A word of caution, there are literally endless ways to write bad code, so this
feature will usually get you close to the line with an error and not on the exact error. Also
the Script Editor lacks a line number feature so it can be difficult to count lines out,
especially in large scripts.

Clicking right on the compiler ERROR line shown above will cause the Script Editor to
highlight the approximate error location – shown below.

<< The highlighted line is ok –error is just above it.

10.2 - Third Party Editors
If you plan on doing a lot of scripting you might consider using a third party
programming editor. Notepad++ is a nice freeware editor. When you open a GP script in
Notepad++, you can choose a “Language” skin, like “Flash actionscript”, that will give
you line numbers and a context sensitive text color scheme. You will still have to open
the file in the GP16P tool before you compile – be sure to Save in the editor first.
Do an internet search for “Notepad++” to download this editor.

 38

10.3 - Using “Print” and Telnet to Debug
The Print statement may be inserted anywhere into the script code to print messages, variable
values, etc. to a Telnet window. This feature is extremely useful for tracking down bugs or
displaying script behavior in compiled code running on the GP-xx panel.
Here’s how it works.

Add a Print statement anywhere in a subroutine or action. Add it to a button press action to print
every time the button is pressed or released.
.
Example Print Statements:
 Print (your_variable_name)
 Print (“Put text in quotes”)

Print (“Put text in quotes and ” #variable# “ use the # sign to concatenate variables and text”)

To Telnet to the GP panel you need to know three things:

• IP address of the GP-xx panel
• User Name: knockknock
• Password: whosthere

Use any Telnet client or open a Command Prompt Window and type:
telnet 192.168.1.221 (or whatever the IP address of your GP-xx panel is).

Toggle the ECHO OFF and enter the username and password; you should see a screen similar to
this one:

 39

Once you are logged on you need to toggle Script Debugging ON.

To toggle Script Debug ON type:

 sdbg 1 <Enter>

To turn it OFF type:

 sdbg 0 <Enter>

Now when you press a button on the GP-xx panel running the Example interlock16.ss script, you
will see the Print statements as they are executed.

 40

Appendix A

A1 - Example Custom Script File – interlock16.ss

To open this file in the GP16PConfiguration Tool do the following:

1-Start the GP-16P Configuration Tool software
2- Click File-New
3- Select interlock16 as the filename and click SAVE.
4- The Script Wizard opens automatically – click CANCEL to close it.
5- Select View >Script Editor
6-Copy and paste everything between the //START HERE and //END HERE lines directly into
the bottom window of the Script Editor.
7- Save as interlock16.ss

//****START HERE*********************************** *****************
//*** *********************************
// Custom Interlock switch code –file interlock16.ss – email paulpicard@wheatstone.com with any
questions.
//*** *********************************
constant: ON = 1
constant: OFF = 0
variable: led_num = 1
variable: switch = 0
variable: source = 0
variable: current_switch = 0
variable: last_led = 0

//*** *********************************
// Map the destination you want to switch sources to here
//*** *********************************
constant: dest_a = 1 // select destination id# in router for this 16x1 line selector

//*** **********************************
//map source signal id's to buttons 1 through 16
//*** **********************************
constant: source1 = 11 //change the 11 to another Source signal id# as required- repeat for the rest
constant: source2 = 12
constant: source3 = 13
constant: source4 = 14
constant: source5 = 15
constant: source6 = 16
constant: source7 = 17
constant: source8 = 18
constant: source9 = 109
constant: source10 = 110
constant: source11 = 111
constant: source12 = 112
constant: source13 = 113
constant: source14 = 114
constant: source15 = 115
constant: source16 = 116 //change the 116 to another source signal id# as required

 41

//***********************
// Subroutines
//***********************

subroutine: handle_sw_press //This subroutine does most of the work.
 //It receives switch# and source info from the button
 //press actions.
{
 print ("Subroutine-handle_sw_press")

 switch = $1
 source = $2
 btn_led (last_led, OFF)
 call store_switch (switch)
 connect (dest_a, source) //dest_a is a fixed destination defined above as a constant
 btn_led (switch, ON)

 print ("connecting Source ID " # source # " to Dest " # dest_a # ".")
}

subroutine: store_switch
{
 current_switch = $1
 last_led = $1

}

//******************************
// Button press section
// *****************************

action: BTN_1_PRESS
{
switch = 1
source = source1
call handle_sw_press(switch, source)
}

action: BTN_2_PRESS
{
switch = 2
source = source2
call handle_sw_press(switch, source)
}

action: BTN_3_PRESS
{
switch = 3
source = source3
call handle_sw_press(switch, source)
}

 42

action: BTN_4_PRESS
{
switch = 4
source = source4
call handle_sw_press(switch, source)
}

action: BTN_5_PRESS
{
switch = 5
source = source5
call handle_sw_press(switch, source)
}

action: BTN_6_PRESS
{
switch = 6
source = source6
call handle_sw_press(switch, source)
}

action: BTN_7_PRESS
{
switch = 7
source = source7
call handle_sw_press(switch, source)
}

action: BTN_8_PRESS
{
switch = 8
source = source8
call handle_sw_press(switch, source)
}

action: BTN_9_PRESS
{
switch = 9
source = source9
call handle_sw_press(switch, source)
}

action: BTN_10_PRESS
{
switch = 10
source = source10
call handle_sw_press(switch, source)
}

action: BTN_11_PRESS
{
switch = 11
source = source11
call handle_sw_press(switch, source)
}

 43

action: BTN_12_PRESS
{
switch = 12
source = source12
call handle_sw_press(switch, source)
}

action: BTN_13_PRESS
{
switch = 13
source = source13
call handle_sw_press(switch, source)
}

action: BTN_14_PRESS
{
switch = 14
source = source14
call handle_sw_press(switch, source)
}

action: BTN_15_PRESS
{
switch = 15
source = source15
call handle_sw_press(switch, source)
}

action: BTN_16_PRESS
{
switch = 16
source = source16
call handle_sw_press(switch, source)
}

//****END HERE ************************************ *****************

	TITLE PAGES
	Page 1
	Page 2

	TABLE OF CONTENTS
	Page 1
	Page 2
	Page 3

	HARDWARE
	General Information
	GP-3 Headphone Panel
	GP-3 Pinout
	GP-3 Schematic
	GP-3 Load Sheet

	GP-4S 4 Switch Mic Panel
	GP-4S Pinouts
	GP-4S Schematic
	GP-4S Load Sheet

	GP-4W 4 Switch Control Panel
	GP-4W Pinouts
	GP-4W Schematics
	GP-4W Load Sheet

	GP-8P 8 Switch Programmable Switch Panel
	GP-8P Pinouts
	GP-8P Schematics
	GP-8P Load Sheet
	GPC-1 Schematics
	Page 1
	Page 2
	Page 3

	GPC-1 Load Sheet

	GP-16P 16 Switch Programmable Switch Panel
	GP-16P Pinouts
	GP-16P Schematics
	GP-16P Load Sheet

	GPC-3 Chassis Full Size Template
	GPC-3 System Parts List
	GPC-3 Installation Kit Parts List

	GP-8P/GP-16P SOFTWARE
	Overview
	Installation
	Setup
	Initial Tests
	Programming the Panel—an Example
	Programming the Panel—an Example (continue)
	Programming the Panel—Diving Deeper
	Programming the Panel—Diving Deeper (continue)
	Startup Code
	Looking at Your Script
	LIO Settings
	Finishing the Script

	The Helpfile Example
	LIO Configuration Example
	Configure the Signal
	Configure the GP-16P LIOs
	Configure the GP-16P LIOs (continue)
	Create a Script Using the Script Wizard
	Create a Script Using the Script Wizard (continue)
	Create a Script Using the Script Wizard (continue)
	Changing the Panel's IP Address
	What's Next?

	APPENDIX—GP-16P CONFIGURATION TOOL PROGRAMMING GUIDE
	Title Page
	Table of Contents
	continued

	1 Introduction
	1.1 GP-xx Hardware Compatibility

	2 What You Need to Get Started
	2.1 GP-16P Configuration Tool Software
	2.2 Physical Network Connection
	2.3 IP Address Settings
	2.4 XPoint Software
	2.5 GP-16P Help File

	3 Using GP-16P Configuration Tool Software
	3.1 Programming Procedure Summary
	3.2 Adding Devices
	3.3 Toggle On-Line Mode
	3.4 Create a New Script File
	3.5 Script Wizard Button Functions
	3.6 Compile the Script
	3.7 Starting the Script
	3.8 Testing
	3.9 Reviewing the Script Wizard Code

	4 Configuring Device Properties
	4.1 Surface Configuration
	4.2 Starting the Device Properties Dialog
	4.3 LIO Configuration
	4.4 Starting the Device Properties Dialog
	4.5 Design Philosophy

	5 LIO Example Using Device Properties
	5.1 Configure the Source Signal in XPoint
	5.2 Configure the GP-16P LIOs
	5.3 Create the Mic Control Script Using Script Wizard
	5.4 Reviewing the Script Wizard Code
	5.5 Beyond the Script Wizard

	6 What is the Script Editor?
	6.1 Script Editor Features
	6.2 Third Party Editors

	7 Creating Custom Scripts
	7.1 Getting the Example File
	7.2 Example Script Design
	7.3 Auto-generated Script Components
	7.4 Custom Start up Subroutine
	7.5 Example Script Structure
	7.6 Example Script - Variables and Constants
	7.7 Example Script - Subroutines
	7.8 Example Script - Actions
	7.9 Custom Scripting Suggestions
	7.10 Scripting Router Control
	7.11 Scripting Surface Control
	7.12 Basic Surface Functions
	7.13 Advanced Surface Functions
	7.14 Example surf_talk Commands

	8 GP-16P Scripting Language Overview
	8.1 Case Sensitivity
	8.2 Comments
	8.3 Actions
	8.4 Global Variables
	8.5 Local & Static Local Variables
	8.6 Constants
	8.7 Arrays

	9 GP-16P Scripting Language Structure
	9.1 Script Structure
	9.2 Constant Declarations
	9.3 Global Variable Declarations
	9.4 Global Array Declarations
	9.5 Local & Static Local Variable Declarations
	9.6 Action Bodies
	9.7 Action Parameters
	9.8 Subroutine Bodies
	9.9 Subroutine Parameters
	continued

	10 Script Debugging
	10.1 Finding Compiler Errors
	10.2 Third Party Editors
	10.3 Using "Print" and Telnet to Debug
	continued

	Appendix A
	A1-Example Custom Script File
	continued
	continued
	continued

